共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
水通道蛋白是一个具有跨膜运输水分子功能的蛋白家族。从1988年Agre等发现水通道蛋白起,目前在不同物种中已经发现了200余种水通道蛋白,其中存在哺乳动物体内的有13种。概述了水通道蛋白的结构、组织特异性分布及特异性通透机理。 相似文献
3.
水通道蛋白的生理功能 ——水通道基因敲除小鼠表型研究进展 总被引:11,自引:0,他引:11
水通道蛋白 (aquaporin, AQP) 是一族细胞膜上选择性高效转运水分子的特异孔道. 自从 Agre 等于 1992 年从红细胞膜发现第一个水通道蛋白 AQP1以来,有关水通道蛋白结构与功能的研究取得了迅速的、系列性的进展 . 已报道的哺乳动物 AQP 家族已有 11 个在蛋白质序列上有同源性成员 (AQP0~AQP10). AQP 在体内各系统组织中广泛表达,除了在与体液分泌和吸收密切相关的多种上皮和内皮细胞高表达外,在一些与体液转运无明显关系的组织细胞如红细胞、白细胞、脂肪细胞和骨骼肌细胞等处也有表达,提示 AQP 可能在多种器官生理和病理中发挥重要作用. 基因打靶技术是研究特定基因在体内生理功能的有力手段. 目前 AQP1、3、4、5 基因敲除和 AQP2 基因点突变的基因敲入小鼠模型 ( 模拟人类常染色体隐性遗传尿崩症 ) 已成功建立并广泛用于表型研究,在 AQP 水通道蛋白生理功能方面获得许多重要进展. 相似文献
4.
水通道蛋白 总被引:5,自引:0,他引:5
水通道蛋白 (aquaporin,AQP)是对水专一的通道蛋白 ,普遍存在于动、植物及微生物中。它所介导的自由水快速被动的跨生物膜转运 ,是水进出细胞的主要途径。1 水通道蛋白的发现长期以来 ,普遍认为细胞内外的水分子是以简单的跨膜扩散方式来透过脂双层膜。后来由于在生物物理学研究中发现红细胞及近端肾小管对渗透压改变引起的水的通透性很高 ,很难单纯以弥散来解释。因此 ,一些学者推测水的跨膜转运除了简单扩散外 ,还存在某种特殊的机制 ,并提出了水通道的概念。1988年 ,Agre等在鉴定人类 Rh血型抗原时 ,偶然在红细胞膜上发现了 1种新的 2… 相似文献
5.
水通道蛋白是细胞间和细胞内水分运输的主要通道,其运输和调控对于植物细胞的水分稳态和胁迫响应具有重要作用。本文综述了水通道蛋白运输的分子机制以及结构修饰、门控、膜转运和异源四聚体等调节机制。 相似文献
6.
7.
水通道蛋白是对水专一的通道蛋白,普遍存在于动、植物及微生物中。研究表明高等植物的质膜和液泡膜上存在着丰富的水通道蛋白,其种类繁多,分布广泛,并具有一定的组织特异性。植物水通道蛋白的活性受到严格的调控,其调节方式主要有两种,分别为基因水平的表达调控和翻译后的修饰作用。 相似文献
8.
植物水孔蛋白研究进展 总被引:1,自引:0,他引:1
水孔蛋白是植物重要的膜功能蛋白,不仅介导植物各组织间水分的高效转运,还参与植物体内其他物质的跨膜转运,同时在植物光合作用、生长发育、免疫应答以及信号转导等生理过程中也发挥重要作用。本文主要综述了植物水孔蛋白结构特征和分类,多种生理功能,以及其转录水平和转录后水平活性调节等方面的最新研究进展,并就如何系统全面地开展水孔蛋白参与植物生长发育过程的分子调控机制研究提出展望。植物水孔蛋白的深入研究有助于阐明植物体内物质转运的分子机理及其生理作用机制,对指导农业生产中作物的生长发育调控有重要理论意义。 相似文献
9.
10.
水通道蛋白7与脂肪细胞甘油运输 总被引:1,自引:0,他引:1
水通道蛋白是一类运输水分子的跨膜蛋白,对于调节细胞内外水的平衡具有重要意义。有些水通道蛋白如水通道蛋白7(AQP7)除了运输水分子外,还可运输其他小分子物质,如甘油等,故又被称为水甘油通道蛋白。脂肪细胞中AQP7参与了甘油的跨膜运输而影响脂肪代谢,AQP7的功能下降或缺陷将导致脂肪细胞中甘油释放受阻,脂肪水解减少而积累,最终引起肥胖的发生。AQP7在甘油运输过程中的作用及与脂肪代谢的关系使人们对肥胖的发生机制有了新的理解,从而为肥胖的治疗提供了新的思路。 相似文献
11.
Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses 总被引:2,自引:0,他引:2
Ashish Kumar Srivastava Suprasanna Penna Dong Van Nguyen 《Critical reviews in biotechnology》2016,36(3):389-398
Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant–water homeostasis, which is regulated by a group of proteins called “aquaporins”. Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops. 相似文献
12.
13.
臭氧胁迫对植物主要生理功能的影响 总被引:9,自引:0,他引:9
近年来,由于光化学反应的臭氧前体增加,全球植物受对流层臭氧(O3)胁迫的程度越来越严重。臭氧污染被认为是造成东欧、西欧和整个美国的大片森林衰退和枯死的主要原因。臭氧胁迫严重影响植物叶片对光能的利用,通过气孔限制和非气孔限制,导致其光合速率的降低,影响光合产物的产量。臭氧对植物的影响与植物体内代谢物质的积聚量紧密联系。臭氧胁迫引发植物的各种防御保护机制,刺激抗氧化系统,影响膜系统,改变其体内碳和矿质养分的吸收并引起它们的重新分配,诱导其基因表达的深层变化。为了适应臭氧胁迫环境,植物通过生理生化机制的调节来保证其生命活动。如细胞通过调节渗透物质的含量来保持渗透势的平衡;细胞内各种抗氧化酶活性增加,以清除自由基,避免或者减轻细胞受到伤害;改变代谢途径以保持能量储备和降低代谢速率。可见,生态环境对生物进化具有重要影响。这个观点将在臭氧胁迫对植物生理的影响中得到证实,也是生物进化论的另一种证据。综述了臭氧对光合生理、呼吸代谢、抗氧化系统、膜系统、矿质养分的吸收和分配与分子生理等主要生理功能的影响,并提出臭氧胁迫对植物生理影响的今后研究方向与未来研究热点是:(1)加强在植物个体和群落水平上臭氧胁迫对植物生理影响的研究;(2)臭氧影响下植物的基因调控和相关信号传递网络系统的机理;(3)通过分子标记、基因图谱、基因组学和转基因技术等方法研究选育适应臭氧胁迫环境的植物;(4)尽可能在接近自然条件的环境中开展研究;(5)臭氧胁迫对亚热带和热带森林及其树种主要生理功能影响的研究;(6)建立模型评估臭氧对植物的影响。 相似文献
14.
植物水孔蛋白最新研究进展 总被引:5,自引:0,他引:5
水孔蛋白(aquaporin,AQP)是高效转运水分子的膜内在蛋白,具有丰富的多样性,在调控植物的水分关系中有重要作用.介绍了AQP的分类、结构特征及其在植物生长发育过程中的多种生理功能和AQP活性的各种调控方式.综述了水分胁迫和盐胁迫等逆境条件及脱落酸、赤霉素和乙烯等植物激素对AQP基因表达调控等方面的研究进展. 相似文献
15.
Borstlap AC 《Trends in plant science》2002,7(12):529-530
New data indicate that the main radiation of plant aquaporins was already established when land plant evolution began. 相似文献
16.
Dr Prof. Hong-Bo Shao Li-Ye Chu Li-Ye Chu Ming-An Shao 《Molecular membrane biology》2013,30(3):179-191
Aquaporins are important molecules that control the moisture level of cells and water flow in plants. Plant aquaporins are present in various tissues, and play roles in water transport, cell differentiation and cell enlargement involved in plant growth and water relations. The insights into aquaporins’ diversity, structure, expression, post-translational modification, permeability properties, subcellular location, etc., from considerable studies, can lead to an understanding of basic features of the water transport mechanism and increased illumination into plant water relations. Recent important advances in determining the structure and activity of different aquaporins give further details on the mechanism of functional regulation. Therefore, the current paper mainly focuses on aquaporin structure-function relationships, in order to understand the function and regulation of aquaporins at the cellular level and in the whole plant subjected to various environmental conditions. As a result, the straightforward view is that most aquaporins in plants are to regulate water flow mainly at cellular scale, which is the most widespread general interpretation of the physiological and functional assays in plants. 相似文献
17.
18.
Tonoplast vesicles of Beta vulgaris storage root show functional aquaporins regulated by protons 总被引:2,自引:0,他引:2
Sutka M Alleva K Parisi M Amodeo G 《Biology of the cell / under the auspices of the European Cell Biology Organization》2005,97(11):837-846
BACKGROUND INFORMATION: Water is crucial for plant development and growth, and its transport pathways inside a plant are an ongoing topic for study. Plants express a large number of membrane intrinsic proteins whose role is now being re-evaluated by considering not only the control of the overall plant water balance but also in adaptation to environmental challenges that may affect their physiology. In particular, we focused our work on water movements across the root cell TP (tonoplast), the delimiting membrane of the vacuole. This major organelle plays a central role in osmoregulation. RESULTS: An enriched fraction of TP vesicles from Beta vulgaris (red beet) storage roots obtained by a conventional method was used to characterize its water permeability properties by means of the stopped-flow technique. The preparation showed high water permeability (485 microm x s(-1)), consistent with values reported in the literature. The water permeability was strongly blocked by HgCl(2) (reduced to 16%) and its energy activation was low. These observations allow us to postulate the presence of functional water channels in this preparation. Moreover, Western-blot analysis demonstrated the presence of a tonoplast intrinsic protein. With the purpose of studying the regulation of water channels, TP vesicles were exposed to different acidic pH media. When the pH of a medium was low (pH 5.6), the water permeability exhibited a 42% inhibition. CONCLUSIONS: Our findings prove that although almost all water channels present in the TP vesicles of B. vulgaris root are sensitive to HgCl(2), not all are inhibited by pH. This interesting selectivity to acidification of the medium could play a role in adapting the water balance in the cell-to-cell pathway. 相似文献
19.
20.
叶片是植物进行光合、呼吸、蒸腾作用的主要器官, 早期的研究主要集中于水分在叶片中的运输路径, 而对叶脉结构及其生态学意义研究甚少。近年来关于叶片叶脉结构、气孔结构的功能及叶片水力学特性的意义研究已经成为植物生理生态的研究热点。该文综述了叶脉的结构性状的指标(叶脉密度、直径、间距等), 叶片水力学结构特性对植物生长、水分运输、气体交换、光合作用等生理功能的影响, 及其与植物对干旱适应性之间的关系。叶脉结构是决定叶片生理功能的基础, 因此在未来的工作中应分析比较不同种类植物叶脉结构形态与导水、光合、呼吸、同化作用之间的关系, 建立植物茎干-枝-叶系统水力传导的机理性模型, 用以探索不同植物功能结构和高效用水生理生态学机制, 据此评估不同种类植物在未来气候情景下的地位。 相似文献