首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-insulin-dependent diabetes mellitus (type 2 diabetes) is known to be a polygenic and polyfactorial disorder. Here we describe the long-term examination of a transgenic mouse line showing the disruption of the leptin receptor (Lepr, Ob-R) gene caused by transgene insertion. The absence of the expression of the long isoform Ob-Rb uncovered a strong variation of the obesity and diabetes phenotype in the homozygous mutant mice of the outbred strain used. One part of the homozygous mice developed severe persistent early-onset obesity, whereas the other part developed cachexia after having shown initial obesity in the examination period up to 26 weeks p.p. The leptin-receptor-defective mice of this line might serve as a model for the investigation of genes modulating the development and mode of expression of diabetes.  相似文献   

2.
The Koletsky ("corpulent) obese rat is homozygous for an autosomal recessive mutation of the leptin receptor (Lepr) that results in hyperphagia, obesity, and hyperlipidemia. Unlike the Lepr mutation that characterizes the fatty Zucker rat (Lepr(fa)), the Koletsky mutation (Lepr(fak)) is null. Because the Lepr(fak) mutation is null, exogenous leptin should have no effect on body weight or food intake in fa(k)/fa(k) rats. We confirmed that prediction: murine leptin, administered into the third ventricle for 5 consecutive days, did not affect daily food intake or body weight in fa(k)/fa(k) rats but produced dose-related inhibitions of food intake and body weight in +/+ and +/fa(k) rats. Although fa(k)/fa(k) rats did not respond to leptin, their response to CCK-8 (4 microg/kg ip) injected before 30-min test meals of 10% sucrose was not different from that of +/+ or +/fa(k) rats. These results demonstrate that the fa(k)/fa(k) rat is a good model in which to analyze the controls of food intake, energy expenditure, and energy storage in the absence of leptin effects.  相似文献   

3.
Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 expression in LepR-b neurons (Lepr(ΔIrs2)). Lepr(ΔIrs2) mice developed obesity, glucose intolerance, and insulin resistance. Leptin action was not altered in young Lepr(ΔIrs2) mice, although insulin-stimulated FoxO1 nuclear exclusion was reduced in Lepr(ΔIrs2) mice. Indeed, deletion of Foxo1 from LepR-b neurons in Lepr(ΔIrs2) mice normalized energy balance, glucose homeostasis, and arcuate nucleus gene expression. Thus, Irs2 signaling in LepR-b neurons plays a crucial role in metabolic sensing and regulation. While not required for leptin action, Irs2 suppresses FoxO1 signaling in LepR-b neurons to promote energy balance and metabolism.  相似文献   

4.
An fa allele of the leptin receptor gene (Lepr(fa)) of the Zucker fatty rat was introduced into the genome of the Spontaneously Diabetic Torii (SDT) rat, an inbred model of nonobese type 2 diabetes mellitus, through the 'Speed congenic method'. The newly established congenic strain of a SDT rat for Lepr(fa) was maintained by intercrossing between fa-heterozygous littermates, and the phenotypes related to obesity and diabetes were investigated till 32 wks of age. SDT fa/fa rats of both sexes exhibited obesity, adiposity and insulin resistance associated with hyperphagia from the loss of leptin action. Interestingly, they developed diabetes from 5 wks of age in males and 8 wks in females with the incidences reaching 100% at 16 wks in males and 73% at 32 wks in females. In contrast, heterozygous (+/fa) and wild-type (+/+) rats developed spontaneous nonobese diabetes in males from approximately 20 wks, but not in females, as with the original SDT rats. These results indicate that the fa gene accelerates the onset of diabetes in SDT rats by making adiposity and/or insulin resistance as potent risk factors for development of their diabetes. The SDT.Lepr(fa) congenic rat strain is expected to be a novel model of obesity-related diabetes and could be a useful tool for studies of the genetic backgrounds of diabetes in response to fa-induced obesity.  相似文献   

5.
Being overweight is a risk factor for postmenopausal breast cancer and is associated with an increased incidence and shortened latency of spontaneous and chemically induced mammary tumors in rodents. However, leptin-deficient obese Lep(ob)Lep(ob) female mice have reduced incidences of spontaneous and oncogene-induced mammary tumors. Of interest, leptin enhances the proliferation of human breast cancer cell lines in which leptin receptors are expressed, which suggests that leptin signaling plays a role in tumor development. We evaluated oncogene-induced mammary tumor development in obese MMTV-TGF-alpha/Lepr(db)Lepr(db) mice that exhibit a defect in OB-Rb, which is considered to be the major signaling isoform of the leptin receptor. Lepr and MMTV-TGF-alpha mice were crossed, and the offspring were genotyped for oncogene expression and the determination of Lepr status. Lean MMTV-TGF-alpha/Lepr(+)Lepr(+) (homozygous) and MMTV-TGF-alpha/Lepr(+)Lepr(db) (heterozygous) mice and obese MMTV-TGF-alpha/Lepr(db)Lepr(db) mice were monitored until age 104 weeks. Body weights of MMTV-TGF-alpha/ Lepr(db)Lepr(db) mice were significantly heavier than those of the lean groups. No mammary tumors were detected in MMTV-TGF-alpha/Lepr(db)Lepr(db) mice, whereas the incidence of mammary tumors in MMTV-TGF-alpha/Lepr(+)Lepr(+) and MMTV-TGF-alpha/ Lepr(+)Lepr(db) mice was 69% and 82%, respectively. Examination of mammary tissue whole mounts indicated an absence of duct formation and branching for MMTV-TGF-alpha/Lepr(db)Lepr(db) mice. Both age at mammary tumor detection and tumor burden (tumors/mouse and tumor weights) were similar for the lean genotypes. Serum leptin levels of MMTV-TGF-alpha/Lepr(db)Lepr(db) mice were 12-20-fold higher than levels of lean mice. Thus, despite elevated serum leptin levels, leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) mice do not develop mammary tumors. This study provides additional evidence that leptin and its cognate receptor may be involved in mammary tumorigenesis.  相似文献   

6.
The relationship between obesity and cholesterol cholelithiasis is not well understood at physiologic or genetic levels. To clarify whether obesity per se leads to increased prevalence of cholelithiasis, we examined cholesterol gallstone susceptibility in three polygenic (KK/H1J, NON/LtJ, NOD/LtJ) and five monogenic [carboxypeptidase E (Cpe (fat)), agouti yellow (A(y)), tubby (tub), leptin (Lep(ob)), leptin receptor (Lepr (db))] murine models of obesity during ingestion of a lithogenic diet containing dairy fat, cholesterol, and cholic acid. At 8 weeks on the diet, one strain of polygenic obese mice was resistant whereas the others revealed low or intermediate prevalence rates of cholelithiasis. Monogenic obese mice showed distinct patterns with either high or low gallstone prevalence rates depending upon the mutation. Dysfunction of the leptin axis, as evidenced by the Lep(ob) and the Lepr (db) mutations, markedly reduced gallstone formation in a genetically susceptible background strain, indicating that in mice with this genetic background, physiologic leptin homeostasis is a requisite for cholesterol cholelithogenesis. In contrast, the Cpe (fat) mutation enhanced the prevalence of cholelithiasis markedly when compared with the background strain. Since CPE converts many prohormones to hormones, a deficiency of biologically active cholecystokinin is a likely contributor to enhanced susceptibility to cholelithiasis through compromising gallbladder contractility and small intestinal motility. Because some murine models of obesity increased, whereas others decreased cholesterol gallstone susceptibility, we establish that cholesterol cholelithiasis in mice is not simply a secondary consequence of obesity per se. Rather, specific genes and distinct pathophysiological pathways are responsible for the shared susceptibility to both of these common diseases.  相似文献   

7.
Brain melanocortin system (MC-system) participates in regulation of energy homeostasis. Dominant mutation yellow of the Agouti gene leads to the hyperphagia, obesity and type 2 diabetes. Stress is known to inhibit food intake and body weight. The aim of the work was to study effects of repeating emotional stress on food intake and lipid-carbohydrate metabolism in Ay-mice. Male mice of C57B1/6J strain predisposed to the obesity (Ay/a-genotype) and normal (a/a-genotype) were used. In control group food intake, body weight and blood levels of insulin and leptin were increased in Ay/a-mice as compared to a/a-mice. Repeating emotional stress (30 min restraint 3 times a week for 5 weeks) did not alter food intake and indices of lipid-carbohydrate metabolism in a/a-mice and decreased food intake, body weight and blood levels of insulin and leptin in Ay/a-mice. Insulin and leptin blood levels were the same in Ay/a- and a/a-mice on 5 week of treatment. The stress increased basal and stress-induced concentrations of corticosterone to an equal degree in Ay/a- and a/a-mice. Thus, light repeating emotional stress hampered development of obesity and 2 type diabetes in the mice with the Agouti yellow mutation.  相似文献   

8.
9.
An allele specific polymerase chain reaction (PCR-SSP) assay for genotyping the mouse leptin receptor (Leprdb) mutation and its wild type (Lepr+) gene was developed using two different fluorescent dye-labeled primers. First, we determined the Leprdb and Lepr+ allele by PCR-SSP assay with usual dye-unlabeled primers. However this method requires two separate PCR reactions because the amplified products specific for each allele are almost the same size. We further developed a simple and reliable two-color PCR-SSP method that uses a color complementation strategy to distinguish the Leprdb and Lepr+ alleles. Leprdb/Leprdb, Leprdb/Lepr+ and Lepr+/Lepr+ of mice (5 each) were clearly genotyped by the two-color PCR-SSP. We also performed PCR-direct sequencing for the same samples and confirmed the accuracy of this method. This method makes it possible to reduce the number of PCR reactions because both alleles are amplified in the same reaction mixture.  相似文献   

10.
The protein p27(Kip1) regulates cell cycle progression in mammals by inhibiting the activity of cyclin-dependent kinases (CDKs). Here we show that p27(Kip1) progressively accumulates in the nucleus of pancreatic beta cells in mice that lack either insulin receptor substrate 2 (Irs2(-/-)) or the long form of the leptin receptor (Lepr(-/-) or db/db). Deletion of the gene encoding p27(Kip1) (Cdkn1b) ameliorated hyperglycemia in these animal models of type 2 diabetes mellitus by increasing islet mass and maintaining compensatory hyperinsulinemia, effects that were attributable predominantly to stimulation of pancreatic beta-cell proliferation. Thus, p27(Kip1) contributes to beta-cell failure during the development of type 2 diabetes in Irs2(-/-) and Lepr(-/-) mice and represents a potential new target for the treatment of this condition.  相似文献   

11.
Few effective measures exist to combat the worldwide obesity epidemic(1), and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control energy balance. Leptin, an adipocyte-derived hormone that signals the long-term status of bodily energy stores, acts through multiple types of leptin receptor long isoform (LepRb)-expressing neurons (called here LepRb neurons) in the brain to control feeding, energy expenditure and endocrine function(2-4). The modest contributions to energy balance that are attributable to leptin action in many LepRb populations(5-9) suggest that other previously unidentified hypothalamic LepRb neurons have key roles in energy balance. Here we examine the role of LepRb in neuronal nitric oxide synthase (NOS1)-expressing LebRb (LepRb(NOS1)) neurons that comprise approximately 20% of the total hypothalamic LepRb neurons. Nos1(cre)-mediated genetic ablation of LepRb (Lepr(Nos1KO)) in mice produces hyperphagic obesity, decreased energy expenditure and hyperglycemia approaching that seen in whole-body LepRb-null mice. In contrast, the endocrine functions in Lepr(Nos1KO) mice are only modestly affected by the genetic ablation of LepRb in these neurons. Thus, hypothalamic LepRb(NOS1) neurons are a key site of action of the leptin-mediated control of systemic energy balance.  相似文献   

12.
There are reports on some patients with clearly manifested specific features of genotype and phenotype similar to those of ob/ob and db/db mice. Three patients from Turkey were described who had a homozygous mutation in the gene of leptin identical to the mutation in C57BL6J ob/ob mice. This mutation is a C --> T substitution in codon 105 of the amino acid sequence of leptin. In mice this mutation generates a stop-codon; in humans it substitutes Arg-105 with Trp. The mutant human leptin cannot be secreted by the cells and thus has no effect on the hypothalamus. Patients with a homozygous mutation of the leptin receptor resulting in the G --> T substitution in the splice donor site of exon 16 were studied in a family of Kabilian origin. Exon 16 was not included in the mature mRNA molecule, and a truncated leptin receptor was synthesized which lacked the transmembrane and intracellular domains; this receptor was unable to transduce the hormonal signal. Both groups of patients suffered from obesity, delayed linear growth, infertility, increased blood insulin level, and other disorders. Leptin influences lipid metabolism by stimulating the expression of the proopiomelanocortin (POMC) gene in melanocortinergic neurons of the hypothalamus. POMC is the precursor of alpha-melanocyte-stimulating hormone (alpha-MSH), which binds to the melanocortin receptor MC4-R in the brain, decreases appetite, and activates lipid metabolism. Patients with mutations in MC4-R suffered only from obesity, but their growth and puberty were not affected. Thus, leptin apparently stimulates growth and puberty not through its binding to the receptors on melanocortinergic neurons, but through its binding to receptors on other hypothalamic neurons; this effect of leptin is not affected by mutations in the MC4-R gene.  相似文献   

13.
14.
Leptin is required for normal energy and glucose homeostasis. The hypothalamic arcuate nucleus (ARH) has been proposed as an important site of leptin action. To assess the physiological significance of leptin signaling in the ARH, we used mice homozygous for a FLPe-reactivatable, leptin receptor null allele (Lepr(neo/neo) mice). Similar to Lepr(db/db) mice, these mice are obese, hyperglycemic, hyperinsulinemic, infertile, and hypoactive. To selectively restore leptin signaling in the ARH, we generated an adeno-associated virus expressing FLPe-recombinase, which was delivered unilaterally into the hypothalamus using stereotaxic injections. We found that unilateral restoration of leptin signaling in the ARH of Lepr(neo/neo) mice leads to a modest decrease in body weight and food intake. In contrast, unilateral reactivation markedly improved hyperinsulinemia and normalized blood glucose levels and locomotor activity. These data demonstrate that leptin signaling in the ARH is sufficient for mediating leptin's effects on glucose homeostasis and locomotor activity.  相似文献   

15.
Leptin resistance is a major cause of obesity in humans. A major component of this resistance is likely an impaired transport of leptin across the blood-brain barrier (BBB). The fattest subgroup of otherwise normal 12-mo-old CD-1 mice have severely impaired transport of leptin across the BBB. However, it is unknown whether these mice are born with a BBB impairment or acquire it with aging and obesity. Here, we found within an otherwise normal population of CD-1 mice that the 10% fattest mice gained weight throughout a 12-mo-life span, whereas the 10% thinnest mice gained little weight after 3 mo of age. The fattest mice acquired a progressive impairment in their ability to transport leptin across the BBB, whereas the thinnest mice had a rate of transport that did not change with age. Fasting fat mice for 24 h or treating them with leptin resulted in modest weight reduction and development of transport rates for leptin across the BBB similar to those of thin mice. These results show that, in obese CD-1 mice, the impaired transport of leptin across the BBB develops in tandem with obesity and is reversible with even modest weight reduction.  相似文献   

16.
Obesity is associated with several diseases including diabetes, nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease, and cancer. Therefore, anti-obesity drugs have the potential to prevent these diseases. In the present study, we demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited therapeutic potency against obesity. Mice were fed a high-fat diet (HFD) for 6 months, followed by a normal-chow diet (NCD). The flurbiprofen treatment simultaneously administered. Although body weight was significantly decreased in flurbiprofen-treated mice, growth was not affected. Flurbiprofen also reduced the HFD-induced accumulation of visceral fat. Leptin resistance, which is characterized by insensitivity to the anti-obesity hormone leptin, is known to be involved in the development of obesity. We found that one of the possible mechanisms underlying the anti-obesity effects of flurbiprofen may have been mediated through the attenuation of leptin resistance, because the high circulating levels of leptin in HFD-fed mice were decreased in flurbiprofen-treated mice. Therefore, flurbiprofen may exhibit therapeutic potential against obesity by reducing leptin resistance.  相似文献   

17.
Leptin deficiency produces a phenotype of obesity, diabetes, and infertility in the ob/ob mouse. In humans, leptin deficiency occurs in some cases of congenital obesity and in lipodystrophic disorders characterized by reduced adipose tissue and insulin resistance. Cutaneous gene therapy is considered an attractive potential method to correct circulating protein deficiencies, since gene-transferred human keratinocytes can produce and secrete gene products with systemic action. However, no studies showing correction of a systemic defect have been reported. We report the successful correction of leptin deficiency using cutaneous gene therapy in the ob/ob mouse model. As a feasibility approach, skin explants from transgenic mice overexpressing leptin were grafted on immunodeficient ob/ob mice. One month later, recipient mice reached body weight values of lean animals. Other biochemical and clinical parameters were also normalized. In a second human gene therapy approach, a retroviral vector encoding both leptin and EGFP cDNAs was used to transduce HK and, epithelial grafts enriched in high leptin-producing HK were transplanted to immunosuppressed ob/ob mice. HK-derived leptin induced body weight reduction after a drop in blood glucose and food intake. Leptin replacement through genetically engineered HK grafts provides a valuable therapeutic alternative for permanent treatment of human leptin deficiency conditions.  相似文献   

18.
Leptin, a polypeptide hormone produced mainly by adipocytes, has diverse effects in both the brain and peripheral organs, including suppression of feeding. Other than mediating leptin transport across the blood-brain barrier, the role of the endothelial leptin receptor remains unclear. We recently generated a mutant mouse strain lacking endothelial leptin receptor signaling, and showed that there is an increased uptake of leptin by brain parenchyma after its delivery by in situ brain perfusion. Here, we tested the hypothesis that endothelial leptin receptor mutation confers partial resistance to diet-induced obesity. These ELKO mice had similar body weight and percent fat as their wild-type littermates when fed with rodent chow, but blood concentrations of leptin were significantly elevated. In response to a high-fat diet, wild-type mice had a greater gain of body weight and fat than ELKO mice. As shown by metabolic chamber measurement, the ELKO mice had higher oxygen consumption, carbon dioxide production, and heat dissipation, although food intake was similar to that of the wild-type mice and locomotor activity was even reduced. This indicates that the partial resistance to diet-induced obesity was mediated by higher metabolic activity in the ELKO mice. Since neuronal leptin receptor knockout mice show obesity and diabetes, the results suggest that endothelial leptin signaling shows opposite effects from that of neuronal leptin signaling, with a facilitatory role in diet-induced obesity.  相似文献   

19.
A PCR-RFLP assay for genotyping at the mouse leptin receptor (Lepr(db)) mutation site was developed using modified primers. The first modified primer creates an AccI restriction site in the mutant Lepr(db) allele to distinguish between the Lepr(db) and Lepr+ alleles whereas the second modified primer creates another AccI site in both alleles to serve as a control for restriction enzyme digestion. The assay is robust and works efficiently on unpurified lysates of mouse tissues and can be applied at any age of the animal. The assay may be used as a diagnostic tool for maintenance of stocks, introgression or other types of crosses involving the Lepr(db) mutation.  相似文献   

20.
Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Lepr(fa)/Lepr(fa)) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (Lepr(FA)/Lepr(FA)) and obese (Lepr(fa)/Lepr(fa)) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号