首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dual-tracer method has been used conventionally for assessment of postprandial fluxes, i.e., appearance in plasma of ingested glucose (R(a meal)), endogenous glucose production (EGP), and disposal (R(d)). To quantify the magnitude of errors affecting the calculations and their dependence on model assumptions, this method was assessed and compared with the triple-tracer method, which provides model-independent estimates. For this purpose, the dual-tracer protocol was performed twice in eight normal subjects, with [1-(13)C]glucose to trace ingested glucose and [6,6-(2)H(2)]glucose constantly infused. A third tracer, [6-(3)H]glucose, was infused at variable rates to render the calculation of R(a meal) and EGP virtually model independent. The dual-tracer method analyzed with a one-compartment model performed poorly, since R(a meal) peak was significantly lower and delayed compared with triple-tracer reference, resulting in a significantly lower estimation of the amount of absorbed glucose (9,036 +/- 558 vs. 11,316 +/- 823 micromol/kg, P = 0.0117). EGP showed a paradoxical pattern, with an initial overshoot followed by a rapid decay to negative values, resulting in a significant underestimation of EGP suppression (57 +/- 3 vs. 65 +/- 4%, P = 0.0117). A two-compartment model performed better but did not overcome the limitations of the dual-tracer approach, since the amount of absorbed glucose was still significantly underestimated (10,231 +/- 661 vs. 12,169 +/- 838 micromol/kg, P = 0.0117) and EGP still showed a paradoxical behavior. R(d), estimated from R(a meal) and EGP, was significantly underestimated with the dual-tracer method, irrespective of adopted model. We conclude that three suitably infused tracers are required for accurate assessment of postprandial R(a meal), EGP, and R(d).  相似文献   

2.
To determine if enteral delivery of glucose influences splanchnic glucose metabolism, 10 subjects were studied when glucose was either infused into the duodenum at a rate of 22 micromol x kg(-1) x min(-1) and supplemental glucose given intravenously or when all glucose was infused intravenously while saline was infused intraduodenally. Hormone secretion was inhibited with somatostatin, and glucose (approximately 8.5 mmol/l) and insulin (approximately 450 pmol/l) were maintained at constant but elevated levels. Intravenously infused [6,6-(2)H(2)]glucose was used to trace the systemic appearance of intraduodenally infused [3-(3)H]glucose, whereas UDP-glucose flux (an index of hepatic glycogen synthesis) was measured using the acetaminophen glucuronide method. Despite differences in the route of glucose delivery, glucose production (3.5 +/- 1.0 vs. 3.3 +/- 1.0 micromol x kg(-1) x min(-1)) and glucose disappearance (78.9 +/- 5.7 vs. 85.0 +/- 7.2 micromol x kg(-1) x min(-1)) were comparable on intraduodenal and intravenous study days. Initial splanchnic glucose extraction (17.5 +/- 4.4 vs. 14.5 +/- 2.9%) and hepatic UDP-glucose flux (9.0 +/- 2.0 vs. 10.3 +/- 1.5 micromol x kg(-1) x min(-1)) also did not differ on the intraduodenal and intravenous study days. These data argue against the existence of an "enteric" factor that directly (i.e., independently of circulating hormone concentrations) enhances splanchnic glucose uptake or hepatic glycogen synthesis in nondiabetic humans.  相似文献   

3.
The present study investigated potential sex-related differences in the metabolic response to carbohydrate (CHO) ingestion during exercise. Moderately endurance-trained men and women (n = 8 for each sex) performed 2 h of cycling at approximately 67% Vo(2 max) with water (WAT) or CHO ingestion (1.5 g of glucose/min). Substrate oxidation and kinetics were quantified during exercise using indirect calorimetry and stable isotope techniques ([(13)C]glucose ingestion, [6,6-(2)H(2)]glucose, and [(2)H(5)]glycerol infusion). In both sexes, CHO ingestion significantly increased the rates of appearance (R(a)) and disappearance (R(d)) of glucose during exercise compared with WAT ingestion [males: WAT, approximately 28-29 micromol x kg lean body mass (LBM)(-1) x min(-1); CHO, approximately 53 micromol x kg LBM(-1) x min(-1); females: WAT, approximately 28-29 micromol x kg LBM(-1) x min(-1); CHO, approximately 61 micromol x kg LBM(-1) x min(-1); main effect of trial, P < 0.05]. The contribution of plasma glucose oxidation to the energy yield was significantly increased with CHO ingestion in both sexes (from approximately 10% to approximately 20% of energy expenditure; main effect of trial, P < 0.05). Liver-derived glucose oxidation was reduced, although the rate of muscle glycogen oxidation was unaffected with CHO ingestion (males: WAT, 108 +/- 12 micromol x kg LBM(-1) x min(-1); CHO, 108 +/- 11 micromol x kg LBM(-1) x min(-1); females: WAT, 89 +/- 10 micromol x kg LBM(-1) x min(-1); CHO, 93 +/- 11 micromol x kg LBM(-1) x min(-1)). CHO ingestion reduced fat oxidation and lipolytic rate (R(a) glycerol) to a similar extent in both sexes. Finally, ingested CHO was oxidized at similar rates in men and women during exercise (peak rates of 0.70 +/- 0.08 and 0.65 +/- 0.06 g/min, respectively). The present investigation suggests that the metabolic response to CHO ingestion during exercise is largely similar in men and women.  相似文献   

4.
[1,2-(13)C(2)]glutamine and [ring-(2)H(5)]phenylalanine were infused for 7 h into five postabsorptive healthy subjects on two occasions. On one occasion, the tracers were infused intravenously for 3.5 h and then by a nasogastric tube for 3.5 h. The order of infusion was reversed on the other occasion. From the plasma tracer enrichment measurements at plateau during the intravenous and nasogastric infusion periods, we determined that 27 +/- 2% of the enterally delivered phenylalanine and 64 +/- 2% of the glutamine were removed on the first pass by the splanchnic bed. Glutamine flux was 303 +/- 8 micromol. kg(-1). h(-1). Of the enterally delivered [(13)C]glutamine tracer, 73 +/- 2% was recovered as exhaled CO(2) compared with 58 +/- 1% of the intravenously infused tracer. The fraction of the enterally delivered tracer that was oxidized specifically on the first pass by the splanchnic bed was 53 +/- 2%, comprising 83% of the total tracer extracted. From the appearance of (13)C in plasma glucose, we estimated that 7 and 10% of the intravenously and nasogastrically infused glutamine tracers, respectively, were converted to glucose. The results for glutamine flux and first-pass extraction were similar to our previously reported values when a [2-(15)N]glutamine tracer [Matthews DE, Morano MA, and Campbell RG, Am J Physiol Endocrinol Metab 264: E848-E854, 1993] was used. The results of [(13)C]glutamine tracer disposal demonstrate that the major fate of enteral glutamine extraction is for oxidation and that only a minor portion is used for gluconeogenesis.  相似文献   

5.
Numerous studies have used the dual-tracer method to assess postprandial glucose metabolism. The present experiments were undertaken to determine whether the marked tracer nonsteady state that occurs with the dual-tracer approach after food ingestion introduces error when it is used to simultaneously measure both meal glucose appearance (R(a meal)) and endogenous glucose production (EGP). To do so, a novel triple-tracer approach was designed: 12 subjects ingested a mixed meal containing [1-(13)C]glucose while [6-(3)H]glucose and [6,6-(2)H(2)]glucose were infused intravenously in patterns that minimized the change in the plasma ratios of [6-(3)H]glucose to [1-(13)C]glucose and of [6,6-(2)H(2)]glucose to endogenous glucose, respectively. R(a meal) and EGP measured with this approach were essentially model independent, since non-steady-state error was minimized by the protocol. Initial splanchnic glucose extraction (ISE) was 12.9% +/- 3.4%, and suppression of EGP (EGPS) was 40.3% +/- 4.1%. In contrast, when calculated with the dual-tracer one-compartment model, ISE was higher (P < 0.05) and EGPS was lower (P < 0.005) than observed with the triple-tracer approach. These errors could only be prevented by using time-varying volumes different for R(a meal) and EGP. Analysis of the dual-tracer data with a two-compartment model reduced but did not totally avoid the problems associated with marked postprandial changes in the tracer-to-tracee ratios. We conclude that results from previous studies that have used the dual-tracer one-compartment model to measure postprandial carbohydrate metabolism need to be reevaluated and that the triple-tracer technique may provide a useful approach for doing so.  相似文献   

6.
Glutamine is the most abundant amino acid in the body and is extensively taken up in gut and liver in healthy humans. To determine whether glucocorticosteroids alter splanchnic glutamine metabolism, the effect of prednisone was assessed in healthy volunteers using isotope tracer methods. Two groups of healthy adults received 5-h intravenous infusions of l-[1-(14)C]leucine and l-[(2)H(5)]glutamine, along with q. 20 min oral sips of tracer doses of l-[1-(13)C]glutamine in the fasting state, either 1) at baseline (control group; n = 6) or 2) after a 6-day course of 0.8 mg.kg(-1).day(-1) prednisone (prednisone group; n = 8). Leucine and glutamine appearance rates (Ra) were determined from plasma [1-(14)C]ketoisocaproate and [(2)H(5)]glutamine, respectively, and leucine and glutamine oxidation from breath (14)CO(2) and (13)CO(2), respectively. Splanchnic glutamine extraction was estimated by the fraction of orally administered [(13)C]glutamine that failed to appear into systemic blood. Prednisone treatment 1) did not affect leucine Ra or leucine oxidation; 2) increased plasma glutamine Ra, mostly owing to enhanced glutamine de novo synthesis (medians +/- interquartiles, 412 +/- 61 vs. 280 +/- 190 mumol.kg(-1).h(-1), P = 0.003); and 3) increased the fraction of orally administered glutamine undergoing extraction in the splanchnic territory (means +/- SE 64 +/- 6 vs. 42 +/- 12%, P < 0.05), without any change in the fraction of glutamine oxidized (means +/- SE, 75 +/- 4 vs. 77 +/- 4%, not significant). We conclude that high-dose glucocorticosteroids increase in splanchnic bed the glutamine requirements. The role of such changes in patients receiving chronic corticoid treatment for inflammatory diseases or suffering from severe illness remains to be determined.  相似文献   

7.
Six endurance-trained men [peak oxygen uptake (V(O(2))) = 4.58 +/- 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 +/- 2% peak V(O(2)) in an environmental chamber maintained at 35 degrees C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 microCi [3-(3)H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (R(a)) in Con trial] and glucose disappearance (R(d)), were measured using a primed, continuous infusion of [6,6-(2)H]glucose, corrected for gut-derived glucose (gut R(a)) in the CHO trial. No differences in heart rate, V(O(2)), respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut R(a) after 30 and 50 min (16 +/- 5 micromol. kg(-1). min(-1)) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose R(d) was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 +/- 6.3 vs 34.6 +/- 3.8 micromol. kg(-1). min(-1), CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of approximately 1.0 g/min, increases glucose R(d) but does not blunt the rise in HGP during exercise in the heat.  相似文献   

8.
Using a specific 13C NMR localization method, 13C label incorporation into the glycogen C1 resonance was measured while infusing [1-(13)C]glucose in intact rats. The maximal concentration of [1-(13)C]glycogen was 5.1 +/- 0.6 micromol g(-1) (mean +/- SE, n = 8). During the first 60 min of acute hyperglycemia, the rate of 13C label incorporation (synthase flux) was 2.3 +/- 0.7 micromol g(-1) h(-1) (mean +/- SE, n = 9 rats), which was higher (p < 0.01) than the rate of 0.49 +/- 0.14 micromol g(-1) h(-1) measured > or = 2 h later. To assess whether the incorporation of 13C label was due to turnover or net synthesis, the infusion was continued in seven rats with unlabeled glucose. The rate of 13C label decline (phosphorylase flux) was lower (0.33 +/- 0.10 micromol g(-1) h(-1)) than the initial rate of label incorporation (p < 0.01) and appeared to be independent of the duration of the preceding infusion of [1-(13)C]glucose (p > 0.05 for correlation). The results implied that net glycogen synthesis of approximately 3 micromol g(-1) had occurred, similar to previous reports. When infusing unlabeled glucose before [1-(13)C]glucose in three studies, the rate of glycogen C1 accumulation was 0.46 +/- 0.08 micromol g(-1) h(-1). The results suggest that steady-state glycogen turnover rates during hyperglycemia are approximately 1% of glucose consumption.  相似文献   

9.
To determine whether glutamine affects glutathione (GSH, gamma-glutamyl-cysteinyl-glycine) metabolism, seven healthy beagle dogs received 6-h infusions of [(15)N]glutamate and [(13)C]leucine after a 3-day fast. Isotope infusions were performed during oral feeding with an elemental regimen, supplemented with either l-glutamine or an isonitrogenous amino acid mixture, on two separate days and in randomized order. Timed blood samples were obtained, and a surgical duodenal biopsy was performed after 6 h of isotope infusion. GSH fractional synthesis rate (FSR) was assessed from [(15)N]glutamate incorporation into blood and gut GSH, and duodenal protein synthesis from [(13)C]leucine incorporation into gut protein. Glutamine supplementation failed to alter erythrocyte GSH concentration (2189+/-86 vs. 1994+/-102 micromol L(-1) for glutamine vs. control; ns) or FSR (64+/-17% vs. 74+/-20% day(-1); ns). In the duodenum, glutamine supplementation was associated with a 92% rise in reduced/oxidized GSH ratio (P=.024) and with a 44% decline in GSH FSR (96+/-15% day(-1) vs. 170+/-18% day(-1); P=.005), whereas total GSH concentration remained unchanged (808+/-154 vs. 740+/-127 micromol kg(-1); P=.779). We conclude that, in dogs receiving enteral nutrition after a 3-day fast: (1) glutamine availability does not affect blood GSH, and, (2) in contrast, in the duodenum, the preserved GSH pool, along with a decreased synthesis rate, suggests that glutamine may maintain GSH pool and intestinal redox status by acutely decreasing GSH utilization.  相似文献   

10.
Nine endurance-trained men exercised on a cycle ergometer at approximately 68% peak O2 uptake to the point of volitional fatigue [232 +/- 14 (SE) min] while ingesting an 8% carbohydrate solution to determine how high glucose disposal could increase under physiological conditions. Plasma glucose kinetics were measured using a primed, continuous infusion of [6,6-2H]glucose and the appearance of ingested glucose, assessed from [3-3H]glucose that had been added to the carbohydrate drink. Plasma glucose was increased (P < 0.05) after 30 min of exercise but thereafter remained at the preexercise level. Glucose appearance rate (R(a)) increased throughout exercise, reaching its peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue, whereas gut R(a) increased continuously during exercise, peaking at 105 +/- 10 micromol. kg(-1). min(-1) at the point of fatigue. In contrast, liver glucose output never rose above resting levels at any time during exercise. Glucose disposal (R(d)) increased throughout exercise, reaching a peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue. If we assume 95% oxidation of glucose R(d), estimated exogenous glucose oxidation at fatigue was 1.36 +/- 0.08 g/min. The results of this study demonstrate that glucose uptake increases continuously during prolonged, strenuous exercise when carbohydrate is ingested and does not appear to limit exercise performance.  相似文献   

11.
To evaluate the importance of protein digestion rate on protein deposition, we characterized leucine kinetics after ingestion of "protein" meals of identical amino acid composition and nitrogen contents but of different digestion rates. Four groups of five or six young men received an L-[1-13C]leucine infusion and one of the following 30-g protein meals: a single meal of slowly digested casein (CAS), a single meal of free amino acid mimicking casein composition (AA), a single meal of rapidly digested whey proteins (WP), or repeated meals of whey proteins (RPT-WP) mimicking slow digestion rate. Comparisons were made between "fast" (AA, WP) and "slow" (CAS, RPT-WP) meals of identical amino acid composition (AA vs. CAS, and WP vs. RPT-WP). The fast meals induced a strong, rapid, and transient increase of aminoacidemia, leucine flux, and oxidation. After slow meals, these parameters increased moderately but durably. Postprandial leucine balance over 7 h was higher after the slow than after the fast meals (CAS: 38 +/- 13 vs. AA: -12 +/- 11, P < 0.01; RPT-WP: 87 +/- 25 vs. WP: 6 +/- 19 micromol/kg, P < 0.05). Protein digestion rate is an independent factor modulating postprandial protein deposition.  相似文献   

12.
The present study was carried out to assess the effects of protease inhibitor (PI) therapy on basal whole body protein metabolism and its response to acute amino acid-glucose infusion in 14 human immunodeficiency virus (HIV)-infected patients. Patients treated with PIs (PI+, 7 patients) or without PIs (PI-, 7 patients) were studied after an overnight fast during a 180-min basal period followed by a 140-min period of amino acid-glucose infusion. Protein metabolism was investigated by a primed constant infusion of l-[1-(13)C]leucine. Dual-energy X-ray absorptiometry for determination of fat-free mass (FFM) and body fat mass measured body composition. In the postabsorptive state, whole body leucine balance was 2.5 times (P < 0.05) less negative in the PI+ than in the PI- group. In HIV-infected patients treated with PIs, the oxidative leucine disposal during an acute amino acid-glucose infusion was lower (0.58 +/- 0.09 vs. 0.81 +/- 0.07 micromol x kg FFM(-1) x min(-1) using plasma [(13)C]leucine enrichment, P = 0.06; or 0.70 +/- 0.10 vs. 0.99 +/- 0.08 micromol x kg FFM(-1) x min(-1) using plasma [(13)C]ketoisocaproic acid enrichment, P = 0.04 in PI+ and PI- groups, respectively) than in patients treated without PIs. Consequently, whole body nonoxidative leucine disposal (an index of protein synthesis) and leucine balance (0.50 +/- 0.10 vs. 0.18 +/- 0.06 micromol x kg FFM x (-1) x min(-1) in PI+ and PI- groups respectively, P < 0.05) were significantly improved during amino acid-glucose infusion in patients treated with PIs. However, whereas the response of whole body protein anabolism to an amino acid-glucose infusion was increased in HIV-infected patients treated with PIs, any improvement in lean body mass was detected.  相似文献   

13.
Acute inhibition of nitric oxide (NO) synthase causes a reversible alteration in myocardial substrate metabolism. We tested the hypothesis that prolonged NO synthase inhibition alters cardiac metabolic phenotype. Seven chronically instrumented dogs were treated with N(omega)-nitro-L-arginine methyl ester (L-NAME, 35 mg.kg(-1).day(-1) po) for 10 days to inhibit NO synthesis, and seven were used as controls. Cardiac free fatty acid, glucose, and lactate oxidation were measured by infusion of [(3)H]oleate, [(14)C]glucose, and [(13)C]lactate, respectively. After 10 days of L-NAME administration, despite no differences in left ventricular afterload, cardiac O(2) consumption was significantly increased by 30%, consistent with a marked enhancement in baseline oxidation of glucose (6.9 +/- 2.0 vs. 1.7 +/- 0.5 micromol.min(-1).100 g(-1), P < 0.05 vs. control) and lactate (21.6 +/- 5.6 vs. 11.8 +/- 2.6 micromol.min(-1).100 g(-1), P < 0.05 vs. control). When left ventricular afterload was increased by ANG II infusion to stimulate myocardial metabolism, glucose oxidation was augmented further in the L-NAME than in the control group, whereas free fatty acid oxidation decreased. Exogenous NO (diethylamine nonoate, 0.01 micromol.kg(-1).min(-1) iv) could not reverse this metabolic alteration. Consistent with the accelerated rate of carbohydrate oxidation, total myocardial pyruvate dehydrogenase activity and protein expression were higher (38 and 34%, respectively) in the L-NAME than in the control group. Also, protein expression of the constitutively active glucose transporter GLUT-1 was significantly elevated (46%) vs. control. We conclude that prolonged NO deficiency causes a profound alteration in cardiac metabolic phenotype, characterized by selective potentiation of carbohydrate oxidation, that cannot be reversed by a short-term infusion of exogenous NO. This phenomenon may constitute an adaptive mechanism to counterbalance cardiac mechanical inefficiency.  相似文献   

14.
The rate of (13)C-label incorporation into both aspartyl (NAA C3) and acetyl (NAA C6) groups of N-acetyl aspartate (NAA) was simultaneously measured in the rat brain in vivo for up to 19 h of [1-(13)C]glucose infusion (n = 8). Label incorporation was detected in NAA C6 approximately 1.5 h earlier than in NAA C3 because of the delayed labeling of the precursor of NAA C3, aspartate, compared to that of NAA C6, glucose. The time courses of NAA were fitted using a mathematical model assuming synthesis of NAA in one kinetic compartment with the respective precursor pools of aspartate and acetyl coenzyme A (acetyl-CoA). The turnover rates of NAA C6 and C3 were 0.7 +/- 0.1 and 0.6 +/- 0.1 micromol/(g h) with the time constants 14 +/- 2 and 13 +/- 2 h, respectively, with an estimated pool size of 8 micromol/g. The results suggest that complete label turnover of NAA from glucose occurs in approximately 70 h. Several hours after starting the glucose infusion, label incorporation into glutathione (GSH) was also detected. The turnover rate of GSH was 0.06 +/- 0.02 micromol/(g h) with a time constant of 13 +/- 2 h. The estimated pool size of GSH was 0.8 micromol/g, comparable to the cortical glutathione concentration. We conclude that NAA and GSH are completely turned over and that the metabolism is extremely slow (< 0.05% of the glucose metabolic rate).  相似文献   

15.
The purpose of this investigation was to determine plasma glucose kinetics and substrate oxidation in men and women during exercise relative to the lactate threshold (LT). Subjects cycled for 25 min at 70 and 90% of O(2) uptake (VO(2)) at LT (70 and 90% LT, respectively). Plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose. There were no significant differences in glucose R(a) between men [22.6 +/- 1.9 and 39.9 +/- 3.9 micromol x kg fat-free mass (FFM)(-1) x min(-1) for 70 and 90% LT, respectively] and women (22.3 +/- 2.7 and 33.9 +/- 5.7 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively). Similarly, there were no significant differences in glucose R(d) between men (21.2 +/- 1.9 and 38.1 +/- 3.7 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively) and women (21.3 +/- 2.8 and 33.3 +/- 5.6 micromol x kg FFM(-1) x min(-1) for 70 and 90% LT, respectively). Although there were no differences between genders in the relative contribution of carbohydrate (CHO) to total energy expenditure, the relative contribution of muscle glycogen to total CHO oxidation (75.8 +/- 3.2 and 64.2 +/- 8.0% for men and women, respectively, at 70% LT and 75.1 +/- 2.6 and 60.1 +/- 11.2% for men and women, respectively, at 90% LT) was lower in women. Consequently, the relative contribution of blood glucose to total CHO oxidation was significantly higher in women. These results indicate that although plasma glucose R(a) and R(d) are similar in men and women, the relative contribution of muscle glycogen and blood glucose is significantly different in women during moderate-intensity exercise relative to LT.  相似文献   

16.
Glial uptake of neurotransmitter glutamate (GLU) from the extracellular fluid was studied in vivo in rat brain by (13)C NMR and microdialysis combined with gas-chromatography/mass-spectrometry. Brain GLU C5 was (13)C enriched by intravenous [2,5-(13)C]glucose infusion, followed by [(12)C]glucose infusion to chase (13)C from the small glial GLU pool. This leaves [5-(13)C]GLU mainly in the large neuronal metabolic pool and the vesicular neurotransmitter pool. During the chase, the (13)C enrichment of whole-brain GLU C5 was significantly lower than that of extracellular GLU (GLU(ECF)) derived from exocytosis of vesicular GLU. Glial uptake of neurotransmitter [5-(13)C]GLU(ECF) was monitored in vivo through the formation of [5-(13)C,(15)N]GLN during (15)NH(4)Ac infusion. From the rate of [5-(13)C,(15)N]GLN synthesis (1.7 +/- 0.03 micromol/g/h), the mean (13)C enrichment of extracellular GLU (0.304 +/- 0.011) and the (15)N enrichment of precursor NH(3) (0.87 +/- 0.014), the rate of synthesis of GLN (V'(GLN)), derived from neurotransmitter GLU(ECF), was determined to be 6.4 +/- 0.44 micromol/g/h. Comparison with V(GLN) measured previously by an independent method showed that the neurotransmitter provides 80-90% of the substrate GLU pool for GLN synthesis. Hence, under our experimental conditions, the rate of 6.4 +/- 0.44 micromol/g/h also represents a reasonable estimate for the rate of glial uptake of GLU(ECF), a process that is crucial for protecting the brain from GLU excitotoxicity.  相似文献   

17.
The purpose of this study was to assess the level of agreement between two techniques commonly used to measure exogenous carbohydrate oxidation (CHO(EXO)). To accomplish this, seven healthy male subjects (24 +/- 3 yr, 74.8 +/- 2.1 kg, V(O2(max)) 62 +/- 4 ml x kg(-1) x min(-1)) exercised at 50% of their peak power for 120 min on two occasions. During these exercise bouts, subjects ingested a solution containing either 144 g glucose (8.7% wt/vol glucose) or water. The glucose solution contained trace amounts of both [U-13C]glucose and [U-14C]glucose to allow CHO(EXO) to be quantified simultaneously. The water trial was used to correct for background 13C enrichment. 13C appearance in the expired air was measured using isotope ratio mass spectrometry, whereas 14C appearance was quantified by trapping expired CO(2) in solution (using hyamine hydroxide) and adding a scintillator before counting radioactivity. CHO(EXO) measured with [13C]glucose ([13C]CHO(EXO)) was significantly greater than CHO(EXO) measured with [14C]glucose ([14C]CHO(EXO)) from 30 to 120 min. There was a 15 +/- 4% difference between [13C]CHO(EXO) and [14C]CHO(EXO) such that the absolute difference increased with the magnitude of CHO(EXO). Further investigations suggest that the difference is not because of losses of CO2 from the trapping solution before counting or an underestimation of the "strength" of the trapping solution. Previous research suggests that the degree of isotopic fractionation is small (S. C. Kalhan, S. M. Savin, and P. A. Adam. J Lab Clin Med89: 285-294, 1977). Therefore, the explanation for the discrepancy in calculated CHO(EXO) remains to be fully understood.  相似文献   

18.
The aim of the present study was to test the hypothesis that the oxidation rate of ingested carbohydrate (CHO) is impaired during exercise in the heat compared with a cool environment. Nine trained cyclists (maximal oxygen consumption 65 +/- 1 ml x kg body wt(-1) x min(-1)) exercised on two different occasions for 90 min at 55% maximum power ouptput at an ambient temperature of either 16.4 +/- 0.2 degrees C (cool trial) or 35.4 +/- 0.1 degrees C (heat trial). Subjects received 8% glucose solutions that were enriched with [U-13C]glucose for measurements of exogenous glucose, plasma glucose, liver-derived glucose and muscle glycogen oxidation. Exogenous glucose oxidation during the final 30 min of exercise was significantly (P < 0.05) lower in the heat compared with the cool trial (0.76 +/- 0.06 vs. 0.84 +/- 0.05 g/min). Muscle glycogen oxidation during the final 30 min of exercise was increased by 25% in the heat (2.07 +/- 0.16 vs. 1.66 +/- 0.09 g/min; P < 0.05), and liver-derived glucose oxidation was not different. There was a trend toward a higher total CHO oxidation and a lower plasma glucose oxidation in the heat although this did not reach statistical significance (P = 0.087 and P = 0.082, respectively). These results demonstrate that the oxidation rate of ingested CHO is reduced and muscle glycogen utilization is increased during exercise in the heat compared with a cool environment.  相似文献   

19.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

20.
The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise (n = 8) or rest (n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg x kg-1x min-1, time (t) = 0-90 min] periods. 3-O-[3H]methylglucose (absorbed actively, facilitatively, and passively) and l-[14C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg x kg-1 x min-1) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 +/- 0.47 and 4.02 +/- 0.53 mg x kg-1x min-1). Passive gut glucose absorption increased approximately 100% after exercise (0.93 +/- 0.06 and 0.45 +/- 0.07 mg x kg-1 x min-1). Transport-mediated glucose absorption increased by approximately 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1). that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2). that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号