首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A whole-cell patch recording was used to determine the effects of staurosporine (ST), a potent protein kinase C (PKC) inhibitor, on L-type Ca(2+) channel (LTCC) activity in rabbit atrial myocytes. Bath application of ST (300 nM) caused a significant reduction in peak I-V relationship of LTCC (from -16.8+/-2.55 to -3.74+/-1.22pApF(-1) at 0 mV). The level of L-type Ca(2+) current (I(Ca,L)) inhibition produced by ST was independent of the voltage at which the effect was measured. ST inhibited the I(Ca,L) in a dose-dependent manner with a K(d) value of 61.98+/-6.802 nM. ST shifted the activation curve to more positive potentials, but did not have any significant effect on the voltage dependence of the inactivation curve. Other PKC inhibitors, GF 109203X (1 microM) and chelerythrine (3 microM), and PKA inhibitor, PKA-IP (5 microM), did not show any inhibitory effect on I(Ca,L). Additional application of ST in the presence of isoproterenol (1 microM), a selective beta-adrenoreceptor agonist, reduced peak I(Ca,L) (78.2%) approximately to the same level with single application of ST (77.8%). In conclusion, our results indicate that ST directly blocks the LTCC in a PKC or PKA-independent manner on LTCC and it should be taken into consideration when ST is used in functional studies of ion channel modulation by protein phosphorylation.  相似文献   

2.
To determine the effect of voltage-independent alterations of L-type Ca(2+) current (I(Ca)) on the sarcoplasmic reticular (SR) Ca(2+) release in cardiac myocytes, we measured I(Ca) and cytosolic Ca(2+) transients (Ca(i)(2+); intracellular Ca(2+) concentration) in voltage-clamped rat ventricular myocytes during 1) an abrupt increase of extracellular [Ca(2+)] (Ca(o)(2+)) or 2) application of 1 microM FPL-64176, a Ca(2+) channel agonist, to selectively alter I(Ca) in the absence of changes in SR Ca(2+) loading. On the first depolarization in higher Ca(o)(2+), peak I(Ca) was increased by 46 +/- 6% (P < 0.001), but the increases in the maximal rate of rise of Ca(i)(2+) (dCa(i)(2+)/dt(max), where t is time; an index of SR Ca(2+) release flux) and the Ca(i)(2+) transient amplitude were not significant. Rapid exposure to FPL-64176 greatly slowed inactivation of I(Ca), increasing its time integral by 117 +/- 8% (P < 0.001) without significantly increasing peak I(Ca), dCa(i)(2+)/dt(max), or amplitude of the corresponding Ca(i)(2+) transient. Prolongation of exposure to higher Ca(o)(2+) or FPL-64176 did not further increase peak I(Ca) but greatly increased dCa(i)(2+)/dt(max), Ca(i)(2+) transient amplitude, and the gain of Ca(2+) release (dCa(i)(2+)/dt(max)/I(Ca)), evidently due to augmentation of the SR Ca(2+) loading. Also, the time to peak dCa(i)(2+)/dt(max) was significantly increased in the continuous presence of higher Ca(o)(2+) (by 37 +/- 5%, P < 0.001) or FPL-64176 (by 63 +/- 5%, P < 0.002). Our experiments provide the first evidence of a marked disparity between an increased peak I(Ca) and the corresponding SR Ca(2+) release. We attribute this to saturation of the SR Ca(2+) release flux as predicted by local control theory. Prolongation of the SR Ca(2+) release flux, caused by combined actions of a larger I(Ca) and maximally augmented SR Ca(2+) loading, might reflect additional Ca(2+) release from corbular SR.  相似文献   

3.
Angiotensin II (ANG II) evokes positive inotropic responses in various species. However, the effects of this peptide on L-type Ca(2+) currents (I(Ca)) are still controversial. We report in this study that the effects of ANG II on I(Ca) differ depending on the mode of patch-clamp technique used, standard whole cell (WC) or perforated patch (PP). No significant effects of ANG II (0.5 microM) were observed when WC in cells dialyzed with high EGTA was used. However, when the intracellular milieu was preserved using PP, ANG II induced a significant 77 +/- 6% increase in I(Ca) (-2.2 +/- 0.3 in control and -3.9 +/- 0.6 pA/pF in ANG II, n = 8, P < 0.05). When WC was used in cells dialyzed with low Ca(2+) buffer capacity (EGTA 0.1 mM), ANG II was able to induce an increase in I(Ca) (-3.5 +/- 0.3 in control vs. -4.8 +/- 0.4 pA/pF in ANG II, n = 13, P < 0.05). This increase was prevented when the cells were also dialyzed with the protein kinase C (PKC) inhibitor chelerythrine (50 microM) or calphostin C (1 microM). The above results allow us to conclude that strong intracellular Ca(2+) buffering prevents the physiological actions of ANG II on cardiac I(Ca), which are also dependent on activation of PKC.  相似文献   

4.
The goal of this study was to determine whether the protein kinase A (PKA) responsiveness of the cardiac L-type Ca(2+) current (ICa) is affected during transient increases in intracellular Ca(2+) concentration. Ventricular myocytes were isolated from 3- to 4-day-old neonatal rats and cultured on aligned collagen thin gels. When measured in 1 or 2 mM Ca(2+) external solution, the aligned myocytes displayed a large ICa that was weakly regulated (20% increase) during stimulation of PKA by 2 microM forskolin. In contrast, application of forskolin caused a 100% increase in ICa when the external Ca(2+) concentration was reduced to 0.5 mM or replaced with Ba(2+). This Ca(2+)-dependent inhibition was also observed when the cells were treated with 1 microM isoproterenol, 100 microM 3-isobutyl-1-methylxanthine, or 500 microM 8-bromo-cAMP. The responsiveness of ICa to PKA was restored during intracellular dialysis with a calmodulin (CaM) inhibitory peptide but not during treatment with inhibitors of protein kinase C, Ca(2+)/CaM-dependent protein kinase, or calcineurin. Adenoviral-mediated expression of a CaM molecule with mutations in all four Ca(2+)-binding sites also increased the PKA sensitivity of ICa. Finally, adult mouse ventricular myocytes displayed a greater response to forskolin and cAMP in external Ba(2+). Thus Ca(2+) entering the myocyte through the voltage-gated Ca(2+) channel regulates the PKA responsiveness of ICa.  相似文献   

5.
In the heart, L-type voltage dependent calcium channels (L-VDCC) provide Ca2+ for the activation of contractile apparatus. The best described pathway for L-type Ca2+ current (ICa,L) modulation is the phosphorylation of calcium channels by cAMP-dependent protein kinase A (PKA), the activity of which is predominantly regulated in opposite manner by β-adrenergic (β-ARs) and muscarinic receptors. The role of other kinases is controversial and often depends on tissues and species used in the studies. In different studies the inhibitors of tyrosine kinases have been shown either to stimulate or inhibit, or even have a biphasic effect on ICa,L. Moreover, there is no clear picture about the route of activation and the site of action of cardiac Src family nonreceptor tyrosine kinases (Src-nPTKs). In the present study we used PP1, a selective inhibitor of Src-nPTKs, alone and together with different activators of ICa,L, and demonstrated that in human atrial myocytes (HAMs): (i) Src-nPTKs are activated concomitantly with activation of cAMP-signaling cascade; (ii) Src-nPTKs attenuate PKA-dependent stimulation of ICa,L by inhibiting PKA activity; (iii) Gαs are not involved in the direct activation of Src-nPTKs. In this way, Src-nPTKs may provide a protecting mechanism against myocardial overload under conditions of increased sympathetic activity.  相似文献   

6.
We investigated differences in L-type Ca2+ current (ICa) between infant (INF, 1-12 mo old), young adult (YAD, 14-18 yr old), and older adult (AD) myocytes from biopsies of right atrial appendages. Basal ICa was smaller in INF myocytes (1.2 +/- 0.1 pA/pF, n = 29, 6 +/- 1 mo old, 11 patients) than in YAD (2.5 +/- 0.2 pA/pF, n = 20, 16 +/- 1 yr old, 5 patients) or AD (2.6 +/- 0.3 pA/pF, n = 19, 66 +/- 3 yr old, 9 patients) myocytes (P < 0.05). Maximal ICa produced by isoproterenol (Iso) was similar in INF, YAD, and AD cells: 8.4 +/- 1.1, 9.6 +/- 1.0, and 9.2 +/- 1.3 pA/pF, respectively. Efficacy (Emax) was larger in INF (607 +/- 50%) than for YAD (371 +/- 29%) or AD (455 +/- 12%) myocytes. Potency (EC50) was 8- to 10-fold higher in AD (0.82 +/- 0.09 nM) or YAD (0.41 +/- 0.14 nM) than in INF (7.6 +/- 3.5 nM) myocytes. Protein levels were similar for Gialpha2 but much greater for Gialpha3 in INF than in AD or YAD atrial tissue. When Gialpha3 activity was inhibited by inclusion of a Gialpha3 COOH-terminal decapeptide in the pipette, basal ICa and the response to 10 nM Iso were increased in INF, but not in YAD, cells. We propose that basal ICa and the response to low-dose beta-adrenergic stimulation are inhibited in INF (but not YAD or AD) cells as a result of constitutive inhibitory effects of Gialpha3.  相似文献   

7.
The cardiacL-type calcium current (ICa) can be modified byactivation of protein kinase C (PKC). However, the effect of PKC activation on ICa is still controversial. Somestudies have shown a decrease in current, whereas other studies havereported a biphasic effect (an increase followed by a decrease incurrent or vice versa). A possible explanation for the conflictingresults is that several isoforms of PKC with opposing effects onICa were activated simultaneously. Here, weexamined the influence of a single PKC isoform (PKC-II) on L-typecalcium channels in isolation from other cardiac isoforms, using atransgenic mouse that conditionally expresses PKC-II. Ventricularcardiac myocytes were isolated from newborn mice and examined forexpression of the transgene using single cell RT-PCR afterICa recording. Cells expressing PKC-II showeda twofold increase in nifedipine-sensitive ICa. The PKC-II antagonist LY-379196 returned ICaamplitude to levels found in non-PKC-II-expressing myocytes. Theincrease in ICa was independent ofCav1.2-subunit mRNA levels as determined by quantitativeRT-PCR. Thus these data demonstrate that PKC- is a potent modulatorof cardiac L-type calcium channels and that this specific isoformincreases ICa in neonatal ventricular myocytes.

  相似文献   

8.
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel.  相似文献   

9.
10.
We have used the whole cell configuration of the patch-clamp technique to measure sarcolemmal Ca(2+) transport by the Na(+)/Ca(2+) exchanger (NCX) and its contribution to the activation and relaxation of contraction in trout atrial myocytes. In contrast to mammals, cell shortening continued, increasing at membrane potentials above 0 mV in trout atrial myocytes. Furthermore, 5 microM nifedipine abolished L-type Ca(2+) current (I(Ca)) but only reduced cell shortening and the Ca(2+) carried by the tail current to 66 +/- 5 and 67 +/- 6% of the control value. Lowering of the pipette Na(+) concentration from 16 to 10 or 0 mM reduced Ca(2+) extrusion from the cell from 2.5 +/- 0.2 to 1.0 +/- 0.2 and 0.5 +/- 0.06 amol/pF. With 20 microM exchanger inhibitory peptide (XIP) in the patch pipette Ca(2+) extrusion 20 min after patch break was 39 +/- 8% of its initial value. With 16, 10, and 0 mM Na(+) in the pipette, the sarcoplasmic reticulum (SR) Ca(2+) content was 47 +/- 4, 29 +/- 6, and 10 +/- 3 amol/pF, respectively. Removal of Na(+) from or inclusion of 20 microM XIP in the pipette gradually eliminated the SR Ca(2+) content. Whereas I(Ca) was the same at -10 or +10 mV, Ca(2+) extrusion from the cell and the SR Ca(2+) content at -10 mV were 65 +/- 7 and 80 +/- 4% of that at +10 mV. The relative amount of Ca(2+) extruded by the NCX (about 55%) and taken up by the SR (about 45%) was, however, similar with depolarizations to -10 and +10 mV. We conclude that modulation of the NCX activity critically determines Ca(2+) entry and cell shortening in trout atrial myocytes. This is due to both an alteration of the transsarcolemmal Ca(2+) transport and a modulation of the SR Ca(2+) content.  相似文献   

11.
Ca2+influx via sarcolemmal voltage-dependent Ca2+ channels(L-type Ca2+ channels) is the fundamental step inexcitation-contraction (E-C) coupling in cardiac myocytes.Physiological and pharmacological studies reveal species-specificdifferences in E-C coupling resulting from a difference in thecontribution of Ca2+ influx and intracellularCa2+ release to activation of contraction. We investigatedthe distribution of L-type Ca2+ channels in isolatedcardiac myocytes from rabbit and rat ventricle by correlativeimmunoconfocal and immunogold electron microscopy. Immunofluorescence labeling revealed discrete spots in the surface plasma membrane and transverse (T) tubules in rabbit myocytes. In ratmyocytes, labeling appeared more intense in T tubules than in thesurface sarcolemma. Immunogold electron microscopy extended thesefindings, showing that the number of gold particles in the surfaceplasma membrane was significantly higher in rabbit than rat myocytes.In rabbit myocyte plasma membrane, the gold particles were distributedas clusters in both regions that were associated with junctionalsarcoplasmic reticulum and those that were not. The findings areconsistent with the idea that influx of Ca2+ via surfacesarcolemmal Ca2+ channels contributes to intracellularCa2+ to a greater degree in rabbit than in rat myocytes.

  相似文献   

12.
Calmodulin (CaM) is implicated in regulation of Ca2+ channels as a Ca2+ sensor. The effect of CaM on rundown of L-type Ca2+ channels in inside-out patch form was investigated in guinea pig ventricular myocytes. Ca2+ channel activity disappeared within 1–3 min and did not reappear when the patch was excised and exposed to an artificial intracellular solution. However, application of CaM (0.03, 0.3, 3 µM) + 3 mM ATP to the intracellular solution within 1 min after patch excision resulted in dose-dependent activation of channel activity. Channel activity averaged 11.2%, 94.7%, and 292.9%, respectively, of that in cell-attached mode. Channel activity in inside-out patch mode was induced by CaM + ATP at nanomolar Ca2+ concentrations ([Ca2+]); however, increase to micromolar [Ca2+] rapidly inactivated the channel activity induced, revealing that the effect of CaM on the channel was Ca2+ dependent. At the 2nd, 4th, 6th, 8th, and 10th minutes after patch excision, CaM (0.75 µM) + ATP induced Ca2+ channel activity to 150%, 100%, 96.9%, 29.3%, and 16.6%, respectively, revealing a time-dependent action of CaM on the channel. CaM added with adenosine 5'-(,-imido)triphosphate (AMP-PNP) also induced channel activity, although with much lower potency and shorter duration. Protein kinase inhibitors KN-62, CaM-dependent protein kinase (CaMK)II 281-309, autocamtide-related CaMKII inhibitor peptide, and K252a (each 1–10 µM) did not block the effect of CaM, indicating that the effect of CaM on the Ca2+ channel was phosphorylation independent. Neither CaM nor ATP alone induced Ca2+ channel activity, showing a cooperative effect of CaM and ATP on the Ca2+ channel. These results suggest that CaM is a crucial regulatory factor of Ca2+ channel basal activity. cardiac myocyte; calcium channel; patch clamp  相似文献   

13.
Calcium (Ca(2+)) influx through Ca(v)1.2 L-type Ca(2+) channels is an important event for cardiac excitation-contraction (E-C) coupling. The functional regulation of Ca(v)1.2 is controlled by multiple kinases and phosphatases. It has been well documented that phosphorylation of Ca(v)1.2 by PKA or other kinases is sufficient for the upregulation of channel activity. However, little is known about the role of protein phosphatases in counterbalancing the phosphorylation of Ca(v)1.2, especially the degree to which protein phosphatase 2A (PP2A)-mediated dephosphorylation is involved in the regulation of Ca(v)1.2 in the mouse heart. Here, we report a physical interaction between PP2A and the C-terminus of Ca(v)1.2 in mouse heart extracts as revealed by coimmunoprecipitation. This interaction was further confirmed by the observation that PP2A and Ca(v)1.2 are colocalized in isolated mouse cardiomyocytes. Specifically, PP2A was bound at serine 1866 in the C-terminus of Ca(v)1.2, and PP2A-induced Ca(v)1.2 dephosphorylation at serine 1866 was observed in mouse cardiomyocytes. Importantly, the density of L-type calcium current increased in line with the increase in the phosphorylation at serine 1866 of Ca(v)1.2 in cardiac-specific PP2A Cα knockout mice. These phenomena were reproduced by treatment with okadaic acid, a PP2A inhibitor, in H9c2 cells. In summary, our data reveal the functional role of PP2A in cardiac Ca(v)1.2 regulation.  相似文献   

14.
Physiologically, human atrial and ventricular myocardium are coupled by an identical beating rate and rhythm. However, contractile behavior in atrial myocardium may be different from that in ventricular myocardium, and little is known about intracellular Ca(2+) handling in human atrium under physiological conditions. We used rapid cooling contractures (RCCs) to assess sarcoplasmic reticulum (SR) Ca(2+) content and the photoprotein aequorin to assess intracellular Ca(2+) transients in atrial and ventricular muscle strips isolated from nonfailing human hearts. In atrial myocardium (n = 19), isometric twitch force frequency dependently (0. 25-3 Hz) increased by 78 +/- 25% (at 3 Hz; P < 0.05). In parallel, aequorin light signals increased by 111 +/- 57% (P < 0.05) and RCC amplitudes by 49 +/- 13% (P < 0.05). Similar results were obtained in ventricular myocardium (n = 13). SR Ca(2+) uptake (relative to Na(+)/Ca(2+) exchange) frequency dependently increased in atrial and ventricular myocardium (P < 0.05). With increasing rest intervals (1-240 s), atrial myocardium (n = 7) exhibited a parallel decrease in postrest twitch force (at 240 s by 68 +/- 5%, P < 0.05) and RCCs (by 49 +/- 10%, P < 0.05). In contrast, postrest twitch force and RCCs significantly increased in ventricular myocardium (n = 6). We conclude that in human atrial and ventricular myocardium the positive force-frequency relation results from increased SR Ca(2+) turnover. In contrast, rest intervals in atrial myocardium are associated with depressed contractility and intracellular Ca(2+) handling, which may be due to rest-dependent SR Ca(2+) loss (Ca(2+) leak) and subsequent Ca(2+) extrusion via Na(+)/Ca(2+) exchange. Therefore, the influence of rate and rhythm on mechanical performance is not uniform in atrial and ventricular myocardium.  相似文献   

15.
Anion channels are extensively expressed in the heart, but their roles in cardiac excitation-contraction coupling (ECC) are poorly understood. We, therefore, investigated the effects of anion channels on cardiac ventricular ECC. Edge detection, fura 2 fluorescence measurements, and whole cell patch-clamp techniques were used to measure cell shortening, the intracellular Ca(2+) transient, and the L-type Ca(2+) current (I(Ca,L)) in single rat ventricular myocytes. The anion channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acid reversibly inhibited the Ca(2+) transients and cell shortening in a dose-dependent manner. Comparable results were observed when the majority of the extracellular Cl(-) was replaced with the relatively impermeant anions glutamate (Glt(-)) and aspartate (Asp(-)). NPPB and niflumic acid or the Cl(-) substitutes did not affect the resting intracellular Ca(2+) concentration but significantly inhibited I(Ca,L). In contrast, replacement of extracellular Cl(-) with the permeant anions NO, SCN(-), and Br(-) supported the ECC and I(Ca,L), which were still sensitive to blockade by NPPB. Exposure of cardiac ventricular myocytes to a hypotonic bath solution enhanced the amplitude of cell shortening and supported I(Ca,L), whereas hypertonic stress depressed the contraction and I(Ca,L). Moreover, cardiac contraction was completely abolished by NPPB (50 microM) under hypotonic conditions. It is concluded that a swelling-activated anion channel may be involved in the regulation of cardiac ECC through modulating L-type Ca(2+) channel activity.  相似文献   

16.
We investigated the roles of beta(1)- and beta(2)-receptors (beta-AR) in adrenergic enhancement of L-type Ca(2+) current (I(CaL)) in canine ventricular myocytes. Isoproterenol and l-norepinephrine produced a monophasic and a biphasic concentration-I(CaL) relationship (CR), respectively. alpha(1)-AR inhibition with prazosin and beta(2)-AR stimulation with zinterol or l-epinephrine shifted the CR of l-norepinephrine leftward. Zinterol (50 nM) and l-epinephrine (10 nM), but not prazosin, altered the biphasic CR of l-norepinephrine to a monophasic CR. Zinterol and l-epinephrine applied after l-norepinephrine had no effect on I(CaL). beta(2)-AR inhibition with ICI-118551 reduced the E(max) of isoproterenol and l-norepinephrine by 60% and abolished the augmentation of l-norepinephrine by zinterol and l-epinephrine. Carbachol (100 nM) modestly reduced the I(CaL) response to beta(1)-AR stimulation but abolished the enhancement via beta(2)-AR. Zinterol augmented the enhancement of I(CaL) by forskolin, IBMX, and theophylline, but not in the presence of CGP-20712A. We conclude that selective beta(2)-AR stimulation does not increase I(CaL) but enhances adenylyl cyclase activity when stimulated via beta(1)-AR and with forskolin. beta(2)-AR activity preconditions adenylyl cyclase for beta(1)-AR stimulation.  相似文献   

17.
L-type and T-type Ca2+ current in cultured ventricular guinea pig myocytes   总被引:1,自引:0,他引:1  
The aim of this investigation was to study L-type and T-type Ca(2+) current (I(CaL) and I(CaT)) in short-term cultured adult guinea pig ventricular myocytes. The isolated myocytes were suspended in serum-supplemented medium up to 5 days. Using whole-cell patch clamp techniques ICaL and ICaT were studied by applying voltage protocols from different holding potentials (-40 and -90 mV). After 5 days in culture the myocytes still showed their typical rod shaped morphology but a decline in cell membrane capacitance (26 %). The peak density of ICaT was reduced significantly between day 0 (-1.6+/-0.37 pA/pF, n=9) and day 5 (-0.4+/-0.13 pA/pF, n=11), whereas peak ICaL density revealed no significant differences during culturing. The I(CaT)/I(CaL) ratio dropped from 0.13 at day 0 to 0.05 at day 5. Compared with day 0 I(CaL) the steady state inactivation curve of day 1, day 3 and day 5 myocytes was slightly shifted to more negative potentials. Our data indicate that guinea pig ventricular L-type and T-type Ca(2+) channels are differently regulated in culture.  相似文献   

18.
Fast two-dimensional confocal microscopy and the Ca(2+) indicator fluo-4 were used to study excitation-contraction (E-C) coupling in cat atrial myocytes which lack transverse tubules and contain both subsarcolemmal junctional (j-SR) and central nonjunctional (nj-SR) sarcoplasmic reticulum. Action potentials elicited by field stimulation induced transient increases of intracellular Ca(2+) concentration ([Ca(2+)](i)) that were highly inhomogeneous. Increases started at distinct subsarcolemmal release sites spaced approximately 2 microm apart. The amplitude and the latency of Ca(2+) release from these sites varied from beat to beat. Subsarcolemmal release fused to build a peripheral ring of elevated [Ca(2+)](i), which actively propagated to the center of the cells via Ca(2+)-induced Ca(2+) release. Resting myocytes exhibited spontaneous Ca(2+) release events, including Ca(2+) sparks and local (microscopic) or global (macroscopic) [Ca(2+)](i) waves. The microscopic [Ca(2+)](i) waves propagated in a saltatory fashion along the sarcolemma ("coupled" Ca(2+) sparks) revealing the sequential activation of Ca(2+) release sites of the j-SR. Moreover, during global [Ca(2+)](i) waves, Ca(2+) release was evident from individual nj-SR sites. Ca(2+) release sites were arranged in a regular three-dimensional grid as deduced from the functional data and shown by immunostaining of ryanodine receptor Ca(2+) release channels. The longitudinal and transverse distances between individual Ca(2+) release sites were both approximately 2 microm. Furthermore, electron microscopy revealed a continuous sarcotubular network and one peripheral coupling of j-SR with the sarcolemma per sarcomere. The results demonstrate directly that, in cat atrial myocytes, the action potential-induced whole-cell [Ca(2+)](i) transient is the spatio-temporal summation of Ca(2+) release from subsarcolemmal and central sites. First, j-SR sites are activated in a stochastic fashion by the opening of voltage-dependent sarcolemmal Ca(2+) channels. Subsequently, nj-SR sites are activated by Ca(2+)-induced Ca(2+) release propagating from the periphery.  相似文献   

19.
External divalent cations are known to play an important role in the function of voltage-gated ion channels. The purpose of this study was to examine the sensitivity of the voltage-gated K(+) currents of human atrial myocytes to external Ca(2+) ions. Myocytes were isolated by collagenase digestion of atrial appendages taken from patients undergoing coronary artery-bypass surgery. Currents were recorded from single isolated myocytes at 37 degrees C using the whole-cell patch-clamp technique. With 0.5 mM external Ca(2+), voltage pulses positive to -20 mV (holding potential = -60 mV) activated outward currents which very rapidly reached a peak (I(peak)) and subsequently inactivated (tau = 7.5 +/- 0.7 msec at +60 mV) to a sustained level, demonstrating the contribution of both rapidly inactivating transient (I(to1)) and non-inactivating sustained (I(so)) outward currents. The I(to1) component of I(peak), but not I(so), showed voltage-dependent inactivation using 100 msec prepulses (V(1/2) = -35.2 +/- 0.5 mV). The K(+) channel blocker, 4-aminopyridine (4-AP, 2 mM), inhibited I(to1) by approximately 76% and reduced I(so) by approximately 33%. Removal of external Ca(2+) had several effects: (i) I(peak) was reduced in a manner consistent with an approximately 13 mV shift to negative voltages in the voltage-dependent inactivation of I(to1). (ii) I(so) was increased over the entire voltage range and this was associated with an increase in a non-inactivating 4-AP-sensitive current. (iii) In 79% cells (11/14), a slowly inactivating component was revealed such that the time-dependent inactivation was described by a double exponential time course (tau(1) = 7.0 +/- 0.7, tau(2) = 90 +/- 21 msec at +60 mV) with no effect on the fast time constant. Removal of external Ca(2+) was associated with an additional component to the voltage-dependent inactivation of I(peak) and I(so) (V(1/2) = -20.5 +/- 1.5 mV). The slowly inactivating component was seen only in the absence of external Ca(2+) ions and was insensitive to 4-AP (2 mM). Experiments with Cs(+)-rich pipette solutions suggested that the Ca(2+)-sensitive currents were carried predominantly by K(+) ions. External Ca(2+) ions are important to voltage-gated K(+) channel function in human atrial myocytes and removal of external Ca(2+) ions affects I(to1) and 4-AP-sensitive I(so) in distinct ways.  相似文献   

20.
Using the whole-cell and single channel recording techniques, the influence of actin cytoskeletons on L-type Ca2+ current was investigated in human gastric smooth muscle cells. In isotonic condition, an actin depolymerizer cytochalasin D (Cyt-D) markedly decreased the whole-cell current (I(Ba)) without changing steady-state voltage dependency and single channel conductance. Intracellular dialysis of phalloidin, an actin polymerizer, significantly increased the I(Ba). Hypotonic stretch (222 mOsm/L) of the myocytes increased the I(Ba), and Cyt-D significantly inhibited the I(Ba) increase by the stretch. Phalloidin was without effect on the I(Ba) increase by the stretch. Phalloidin antagonized the Cyt-D inhibition of the stretch-induced I(Ba) increase. Neither heterotrimeric G protein modifiers (GTPgammaS and GDPbetaS) nor rho GTPase inhibitor (C3 exoenzyme) influenced the stretch-induced responses. These results reveal that the integrity of the actin cytoskeleton is an important factor which determines the activity of L-type Ca2+ channels and a response to stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号