首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium balance determines the extracellular fluid volume and sets arterial blood pressure (BP). Chronically raised BP (hypertension) represents a major health risk in Western societies. The relationship between BP and renal sodium excretion (the pressure/natriuresis relationship) represents the key element in defining the BP homeostatic set point. The renin–angiotensin–aldosterone system (RAAS) makes major adjustments to the rates of renal sodium secretion, but this system works slowly over a period of hours to days. More rapid adjustments can be made by the sympathetic nervous system, although the kidney can function well without sympathetic nerves. Attention has now focussed on regulatory mechanisms within the kidney, including extracellular nucleotides and the P2 receptor system. Here, we discuss how extracellular ATP can control renal sodium excretion by altering the activity of epithelial sodium channels (ENaC) present in the apical membrane of principal cells. There remains considerable controversy over the molecular targets for released ATP, although the P2Y2 receptor has received much attention. We review the available data and reflect on our own findings in which ATP-activated P2Y and P2X receptors make adjustments to ENaC activity and therefore sodium excretion.  相似文献   

2.
3.
4.
In seven healthy male subjects, a natriuretic effect of 17 alpha-hydroxyprogesterone caproate (17 alpha-OHPC) was demonstrated. Three of these subjects were kept on an uncontrolled diet and were examined over a period of 12 days. To the remaining four subjects, a single dose of 250 mg 17 alpha-OHPC was given intramuscularly after four days of intake of a chemically defined diet (Vivasorb). In this second test procedure, blood samples were taken in the recumbent position every two hours throughout a period of 12 h after the injection. For two more days and during the days before the administration of 17 alpha-OHPC, blood was taken at 8 a.m. before getting up from bed in same intervals, urine was collected for analysis of sodium and potassium excretion. During the first 12 h after the injection of 17 alpha-OHPC, the urinary sodium/potassium ratio significantly increased in all subjects. Plasma renin activity showed no characteristic changes at this time, whereas the plasma concentrations of aldosterone and cortisol decreased. The decrease of cortisol concentration started immediately after the injection and was more pronounced than that of plasma aldosterone. During the following 36 h, renin activity as well as aldosterone and cortisol concentrations in plasma showed an increase; in contrast, the sodium/potassium ratio decreased. On the basis of these results, the following effects of 17 alpha-OHPC are discussed: (1) an acute natriuresis which may be due to a competitive inhibition of aldosterone at the renal tubules, and (2) an inhibition of pituitary ACTH secretion or of adrenal steroid biosynthesis.  相似文献   

5.
6.
Saline was infused intravenously for 90 min to normal, sodium-replete conscious dogs at three different rates (6, 20, and 30 micromol x kg(-1) x min(-1)) as hypertonic solutions (HyperLoad-6, HyperLoad-20, and HyperLoad-30, respectively) or as isotonic solutions (IsoLoad-6, IsoLoad-20, and IsoLoad-30, respectively). Mean arterial blood pressure did not change with any infusion of 6 or 20 micromol x kg(-1) x min(-1). During HyperLoad-6, plasma vasopressin increased by 30%, although the increase in plasma osmolality (1.0 mosmol/kg) was insignificant. During HyperLoad-20, plasma ANG II decreased from 14+/-2 to 7+/-2 pg/ml and sodium excretion increased markedly (2.3+/-0.8 to 19+/-8 micromol/min), whereas glomerular filtration rate (GFR) remained constant. IsoLoad-20 decreased plasma ANG II similarly (13+/-3 to 7+/-1 pg/ml) concomitant with an increase in GFR and a smaller increase in sodium excretion (1.9+/-1.0 to 11+/-6 micromol/min). HyperLoad-30 and IsoLoad-30 increased mean arterial blood pressure by 6-7 mm Hg and decreased plasma ANG II to approximately 6 pg/ml, whereas sodium excretion increased to approximately 60 micromol/min. The data demonstrate that, during slow sodium loading, the rate of excretion of sodium may increase 10-fold without changes in mean arterial blood pressure and GFR and suggest that the increase may be mediated by a decrease in plasma ANG II. Furthermore, the vasopressin system may respond to changes in plasma osmolality undetectable by conventional osmometry.  相似文献   

7.
Regulation of sodium excretion by renal interstitial hydrostatic pressure   总被引:1,自引:0,他引:1  
Renal interstitial hydrostatic pressure (RIHP) appears to play a crucial role in linking the renal circulation to the rate of tubular reabsorption of sodium and water. Various physiological and pharmacological maneuvers that increase RIHP are associated with increases in sodium excretion. Renal vasodilators that increase RIHP also increase sodium excretion, whereas the vasodilators that do not alter RIHP do not affect sodium excretion. Preventing increases in RIHP during intrarenal infusion of vasodilators markedly attenuates the normal increase in sodium and water excretion. Techniques that directly increase RIHP by renal interstitial volume expansion increase urinary excretion of sodium and water. RIHP may be an important mediator of renal perfusion pressure (RPP) natriuresis. Experimental evidence suggests that the proximal tubule of deep nephrons may be an important nephron site that is sensitive to changes in RPP.  相似文献   

8.
Pregnancy is associated with profound changes in renal hemodynamics and electrolyte handling. Relaxin, a hormone secreted by the corpus luteum, has been shown to induce pregnancy-like increases in renal blood flow and glomerular filtration rate (GFR) and alter osmoregulation in nonpregnant female and male rats. However, its effects on renal electrolyte handling are unknown. Accordingly, the influence of short (2 h)- and long-term (7 day) infusion of relaxin on renal function was determined in the male rat. Short term infusion of recombinant human relaxin (rhRLX) at 4 microg.h(-1).100 g body wt(-1) induced a significant increase in effective renal blood flow (ERBF) within 45 min, which peaked at 2 h of infusion (vehicle, n = 6, 2.1 +/- 0.4 vs. rhRLX, n = 7, 8.1 +/- 1.1 ml.min(-1).100 g body wt(-1), P < 0.01). GFR and urinary excretion of electrolytes were unaffected. After a 7-day infusion of rhRLX at 4 microg/h, ERBF (1.4 +/- 0.2 vs. 2.5 +/- 0.4 ml.min(-1).100 g body wt(-1), P < 0.05), urine flow rate (3.1 +/- 0.3 vs. 4.3 +/- 0.4 microl.min(-1).100 g body wt(-1), P < 0.05) and urinary sodium excretion (0.8 +/- 0.1 vs. 1.2 +/- 0.1 micromol.min(-1).100 g body wt(-1), P < 0.05) were significantly higher; plasma osmolality and sodium concentrations were lower in rhRLX-treated rats. These data show that long-term relaxin infusion induces a natriuresis and diuresis in the male rat. The mechanisms involved are unclear, but they do not involve changes in plasma aldosterone or atrial natriuretic peptide concentrations.  相似文献   

9.
10.
There is evidence of impaired renal sodium excretion in salt-sensitive African Blacks. A decreased rate of renal sodium chloride (NaCl) excretion, low plasma renin activity and a tendency to elevated blood pressure are the hallmarks of salt sensitivity. Recent evidence indicates that increased proximal and distal tubular fluid reabsorption in some tropical residents may explain the impaired sodium excretion in these people. In this study of a cohort population, we speculated that subjects selected from that population might be salt-sensitive. We therefore measured the sodium balance in 10 normotensive male subjects over 10 consecutive days, after they had ingested a normal or a high amount of sodium, as NaCl (salt) in their diet. We quantified their renal sodium excretion rate by phenomenological analysis of their sodium balance data. We also measured plasma renin activity for 7 consecutive days in a separate group of 6 male and 4 female subjects in order to assess the state of their renin/angiotensin system. We selected all our subjects from a cohort population of 269 subjects randomly selected from a community known to have a high prevalence of primary hypertension. Our data on two separate groups of subjects from the same cohort population revealed delayed renal sodium excretion with t 1/2 of about 5 days, compared to published data for normal individuals with t 1/2 of less than 24 h. Also, plasma renin activity levels were low. Hence, our subjects are salt-sensitive. Quantification of their renal impairment is important for various reasons: it heightens one’s appreciation of the problem of salt retention in African Blacks who are salt-sensitive and it also underlines the importance of the need for further research into the benefits of dietary salt restriction for reducing cardiovascular mortality in African populations, as has been done in some Western countries. Received: 4 March 1999 / Accepted: 12 May 1999  相似文献   

11.
The rapidity with which the kidney alters sodium excretion (ENa) in response to changes in dietary Na was studied in Merino sheep by analyzing hourly ENa for three control days, and then for three days after a change in Na intake. On a control diet of 117 mmol Na, sheep had a pre-feeding ENa of 3.5 mmol/hr., a striking post-feeding natriuresis that began 2 hours after feeding (less than 0.01), peaked at 4 hrs. and then declined to pre-feeding levels 7 hrs. after feeding. When in balance on a high Na diet the feeding of a low Na meal resulted in marked depression of ENa within 4 hours after feeding. On a low Na diet, a 100 mmol Na meal resulted in an increase in ENa within 4 hours but a 50 mmol Na meal did not. Thus, the sensitivity of post-feeding natriuresis is between 50 and 100 mmols Na. As post feeding natriuresis is a naturally occurring physiological event it should provide a useful paradigm for the investigation of mechanisms controlling Na balance.  相似文献   

12.
13.
Thomas P. Green 《Life sciences》1984,34(22):2169-2176
The effects on renal sodium excretion of two systemic vasodilators, hydralazine and diazoxide, were investigated in volume expanded, anesthetized rats with unilaterally denervated kidneys. Urinary sodium excretion and fractional excretion of filtered sodium increased following hydralazine but decreased following diazoxide. Changes in renal hemodynamics were dissimilar as well: renal plasma flow was increased following hydralazine, but unchanged with diazoxide. All changes in renal sodium excretion and renal hemodynamics following hydralazine were prevented by pretreatment with indomethacin. Renal denervation accentuated the increases in fractional sodium excretion and renal blood flow that occured following hydralazine.Hydralazine and diazoxide differ substantially in their effects on renal sodium excretion, apparently due to the stimulation of renal prostaglandins by the former agent. Although renal innervation attenuates the natriuretic effect of hydralazine, stimulation of the sympathetic nervous system does not account for differences in the renal effects of these two drugs.  相似文献   

14.
The degree of water transport via aquaporin-2 (AQP2) water channels in renal collecting duct principal cells is reflected by the level of the urinary excretion of AQP2 (u-AQP2). In rats, the AQP2 expression varies with sodium intake. In humans, the effect of sodium intake on u-AQP2 and the underlying mechanisms have not previously been studied. We measured the effect of 4 days of high sodium (HS) intake (300 mmol sodium/day; 17.5 g salt/day) and 4 days of low sodium (LS) intake (30 mmol sodium/day; 1.8 g salt/day) on u-AQP2, fractional sodium excretion (FE(Na)), free water clearance (C(H2O)), urinary excretion of PGE(2) (u-PGE(2)) and cAMP (u-cAMP), and plasma concentrations of vasopressin (AVP), renin (PRC), ANG II, aldosterone (Aldo), atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP) in a randomized, crossover study of 21 healthy subjects, during 24-h urine collection and after hypertonic saline infusion. The 24-h urinary sodium excretion was significantly higher during HS intake (213 vs. 41 mmol/24 h). ANP and BNP were significantly lower and PRC, ANG II, and Aldo were significantly higher during LS intake. AVP, u-cAMP, and u-PGE(2) were similar during HS and LS intake, but u-AQP2 was significantly higher during HS intake. The increases in AVP and u-AQP2 in response to hypertonic saline infusion were similar during HS and LS intake. In conclusion, u-AQP2 was increased during HS intake, indicating that water transport via AQP2 was increased. The effect was mediated by an unknown AVP-independent mechanism.  相似文献   

15.
16.
We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号