首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We aimed to determine whether rectal distension and/or infusion of bile acids stimulates propagating or nonpropagating activity in the unprepared proximal colon in 10 healthy volunteers using a nasocolonic manometric catheter (16 recording sites at 7.5-cm spacing). Sensory thresholds and proximal colonic motor responses were assessed following rectal distension by balloon inflation and rectal instillation of chenodeoxycholic acid. Maximum tolerated balloon volume and the volume that stimulated a desire to defecate were both significantly (P < 0.01) reduced after rectal chenodeoxycholic acid. The frequency of colonic propagating pressure wave sequences decreased significantly in response to initial balloon inflations (P < 0.05), but the frequency doubled after subsequent chenodeoxycholic acid infusion (P < 0.002). Nonpropagating activity decreased after balloon inflation, was not influenced by acid infusion, and demonstrated a further decrease in response to repeat balloon inflation. We concluded that rectal chenodeoxycholic acid in physiological concentrations is a potent stimulus for propagating pressure waves arising in the proximal colon and reduces rectal sensory thresholds. Rectal distension inhibits all colonic motor activity.  相似文献   

2.
Despite having almost identical origins and similar perfusion pressures, the flow-velocity waveforms in the left and right coronary arteries are strikingly different. We hypothesized that pressure differences originating from the distal (microcirculatory) bed would account for the differences in the flow-velocity waveform. We used wave intensity analysis to separate and quantify proximal- and distal-originating pressures to study the differences in velocity waveforms. In 20 subjects with unobstructed coronary arteries, sensor-tipped intra-arterial wires were used to measure simultaneous pressure and Doppler velocity in the proximal left main stem (LMS) and proximal right coronary artery (RCA). Proximal- and distal-originating waves were separated using wave intensity analysis, and differences in waves were examined in relation to structural and anatomic differences between the two arteries. Diastolic flow velocity was lower in the RCA than in the LMS (35.1 +/- 21.4 vs. 56.4 +/- 32.5 cm/s, P < 0.002), and, consequently, the diastolic-to-systolic ratio of peak flow velocity in the RCA was significantly less than in the LMS (1.00 +/- 0.32 vs. 1.79 +/- 0.48, P < 0.001). This was due to a lower distal-originating suction wave (8.2 +/- 6.6 x 10(3) vs. 16.0 +/- 12.2 x 10(3) W.m(-2).s(-1), P < 0.01). The suction wave in the LMS correlated positively with left ventricular pressure (r = 0.6, P < 0.01) and in the RCA with estimated right ventricular systolic pressure (r = 0.7, P = 0.05) but not with the respective diameter in these arteries. In contrast to the LMS, where coronary flow velocity was predominantly diastolic, in the proximal RCA coronary flow velocity was similar in systole and diastole. This difference was due to a smaller distal-originating suction wave in the RCA, which can be explained by differences in elastance and pressure generated between right and left ventricles.  相似文献   

3.
The relationship between slow waves and peristaltic reflexes has not been well analyzed. In this study, we have recorded the electrical activity of slow waves together with that generated by spontaneous peristaltic contractions at 240 extracellular sites simultaneously. Recordings were made from five isolated tubular and six sheet segments of feline duodenum superfused in vitro. In all preparations, slow waves propagated as broad wave fronts along the longitudinal axis of the preparation in either the aborad or the orad direction. Electrical potentials recorded during peristalsis (peristaltic waves) also propagated as broad wave fronts in either directions. Peristaltic waves often spontaneously stopped conducting (46%), in contrast to slow waves that never did. Peristaltic waves propagated at a lower velocity than the slow waves (0.98 +/- 0.25 and 1.29 +/- 0.28 cm/s, respectively; P < 0.001; n = 24) and in a direction independent of the preceding slow wave direction (64% in the same direction, 46% in the opposite direction). In conclusion, slow waves and peristaltic waves in the isolated feline duodenum seem to constitute two separate electrical events that may drive two different mechanisms of contraction in the small intestine.  相似文献   

4.
Transgenic null mice were used to test the hypothesis that water channel aquaporin-4 (AQP4) is involved in colon water transport and fecal dehydration. AQP4 was immunolocalized to the basolateral membrane of colonic surface epithelium of wild-type (+/+) mice and was absent in AQP4 null (-/-) mice. The transepithelial osmotic water permeability coefficient (P(f)) of in vivo perfused colon of +/+ mice, measured using the volume marker (14)C-labeled polyethylene glycol, was 0.016 +/- 0.002 cm/s. P(f) of proximal colon was greater than that of distal colon (0.020 +/- 0.004 vs. 0. 009 +/- 0.003 cm/s, P < 0.01). P(f) was significantly lower in -/- mice when measured in full-length colon (0.009 +/- 0.002 cm/s, P < 0. 05) and proximal colon (0.013 +/- 0.002 cm/s, P < 0.05) but not in distal colon. There was no difference in water content of cecal stool from +/+ vs. -/- mice (0.80 +/- 0.01 vs. 0.81 +/- 0.01), but there was a slightly higher water content in defecated stool from -/- mice (0.68 +/- 0.01 vs. 0.65 +/- 0.01, P < 0.05). Despite the differences in water permeability with AQP4 deletion, theophylline-induced secretion was not impaired (50 +/- 9 vs. 51 +/- 8 microl. min(-1). g(-1)). These results provide evidence that transcellular water transport through AQP4 water channels in colonic epithelium facilitates transepithelial osmotic water permeability but has little or no effect on colonic fluid secretion or fecal dehydration.  相似文献   

5.
The purpose of this study was to determine some relationships between colonic myoelectric spiking activity and intraluminal propulsion when colonic peristalsis was stimulated by bisacodyl. Myoelectric recordings were obtained in 12 subjects by means of a 50 cm long Silastic tube equipped with four bipolar electrodes fixed at 10-cm intervals. The tube was introduced into the left colon by flexible sigmoidoscopy and the electrodes were located at 50, 40, 30, and 20 cm from the anal verge. A small polyethylene catheter opening at the proximal end of the Silastic tube was used for introducing the laxative into the colon. One hour recording sessions were obtained before and after bisacodyl administration (5 mL of 0.4% solution). The control tracings showed that colonic spiking activity was made of rhythmic stationary bursts that occurred at only one electrode site and of sporadic bursts that were either propagating over the whole colonic segment or nonpropagating. Administration of bisacodyl was followed by complete suppression of the rhythmic stationary activity; a considerable increase in the sporadic spiking activity, propagating as well as nonpropagating; the occurrence of abdominal cramps and urgency to defecate, both associated with the propagating sporadic spike bursts. It is concluded that colonic propulsion induced by bisacodyl may be dependent upon the production of the sporadic bursts, particularly the propagating ones, while the rhythmic stationary bursts do not seem to play a significant role in colonic transit.  相似文献   

6.
If the lung is an elastic continuum, both longitudinal and transverse stress waves should be propagated in the medium with distinct velocities. In five isolated sheep lungs, we investigated the propagation of stress waves. The lungs were degassed and then inflated to a constant transpulmonary pressure (Ptp). We measured signals transmitted at locations approximately 1.5, 6, and 11 cm from an impulse surface distortion with the use of small microphones embedded in the pleural surface. Two transit times were computed from the first two significant peaks of the cross-correlation of microphone signal pairs. The "fast" wave velocities averaged 301 +/- 92, 445 +/- 80, and 577 +/- 211 (SD) cm/s for Ptp values of 5, 10, and 15 cmH2O, respectively. Corresponding "slow" wave velocities averaged 139 +/- 22, 217 +/- 36, and 255 +/- 89 cm/s. The fast waves were consistent with longitudinal waves of velocity [(K + 4G/3)/p]1/2, where bulk modulus K = 4 Ptp and shear modulus G = 0.7 Ptp. The slow waves were consistent with transverse (and/or Rayleigh) waves of velocity (G/p)1/2, with a G value of 0.9 Ptp. Measured values of K were 5 Ptp and values of G measured by indentation tests were 0.7 Ptp. Thus, stress wave velocities measured on pleural surface of isolated lungs correlated well with elastic moduli of lung parenchyma.  相似文献   

7.
The relative contributions to gastric emptying from common cavity antroduodenal pressure difference ("pressure pump") vs. propagating high-pressure waves in the distal antrum ("peristaltic pump") were analyzed in humans by high-resolution manometry concurrently with time-resolved three-dimensional magnetic resonance imaging during intraduodenal nutrient infusion at 2 kcal/min. Gastric volume, space-time pressure, and contraction wave histories in the antropyloroduodenal region were measured in seven healthy subjects. The subjects fell into two distinct groups with an order of magnitude difference in levels of antral pressure activity. However, there was no significant difference in average rate of gastric emptying between the two groups. Antral pressure history was separated into "propagating high-pressure events" (HPE), "nonpropagating HPEs," and "quiescent periods." Quiescent periods dominated, and average pressure during quiescent periods remained unchanged with decreasing gastric volume, suggesting that common cavity pressure levels were maintained by increasing wall muscle tone with decreasing volume. When propagating HPEs moved to within 2-3 cm of the pylorus, pyloric resistance was found statistically to increase with decreasing distance between peristaltic waves and the pylorus. We conclude that transpyloric flow tends to be blocked when antral contraction waves are within a "zone of influence" proximal to the pylorus, suggesting physiological coordination between pyloric and antral contractile activity. We further conclude that gastric emptying of nutrient liquids is primarily through the "pressure pump" mechanism controlled by pyloric opening during periods of relative quiescence in antral contractile wave activity.  相似文献   

8.
The lower inflection point (LIP) on the total respiratory system pressure-volume (P-V) curve is widely used to set positive end-expiratory pressure (PEEP) in patients with acute respiratory failure (ARF) on the assumption that LIP represents alveolar recruitment. The aims of this work were to study the relationship between LIP and recruited volume (RV) and to propose a simple method to quantify the RV. In 23 patients with ARF, respiratory system P-V curves were obtained by means of both constant-flow and rapid occlusion technique at four different levels of PEEP and were superimposed on the same P-V plot. The RV was measured as the volume difference at a pressure of 20 cm H(2)O. A third measurement of the RV was done by comparing the exhaled volumes after the same distending pressure of 20 cm H(2)O was applied (equal pressure method). RV increased with PEEP (P < 0.0001); the equal pressure method compares favorably with the other methods (P = 0.0001 by correlation), although individual data cannot be superimposed. No significant difference was found when RV was compared with PEEP in the group of patients with a LIP < or =5 cm H(2)O and the group with a LIP >5 cm H(2)O (76.9 +/- 94.3 vs. 61.2 +/- 51.3, 267.7 +/- 109.9 vs. 209.6 +/- 73.9, and 428.2 +/- 216.3 vs. 375.8 +/- 145.3 ml with PEEP of 5, 10, and 15 cm H(2)O, respectively). A RV was found even when a LIP was not present. We conclude that the recruitment phenomenon is not closely related to the presence of a LIP and that a simple method can be used to measure RV.  相似文献   

9.
The pressure-velocity relationship across the normal mitral valve is approximated by the Bernoulli equation DeltaP = 1/2 rhoDeltav(2) + M. dv/dt, where DeltaP is the atrioventricular pressure difference, rho is blood density, v is transmitral flow velocity, and M is mitral inertance. Although M is indispensable in assessing transvalvular pressure differences from transmitral flow, this term is poorly understood. We measured intraoperative high-fidelity left atrial and ventricular pressures and simultaneous transmitral flow velocities by using transesophageal echocardiography in 100 beats (8 patients). We computed mean mitral inertance (M) by M = integral((DeltaP)-(1/2 x rho v(2))dt/integral(dv/dt)dt and we assessed the effect of the inertial term on the transmitral pressure-flow relation. ranged from 1.03 to 5.96 g/cm(2) (mean = 3.82 +/- 1.22 g/cm(2)). DeltaP calculated from the simplified Bernoulli equation (DeltaP = 1/2. rhov(2)) lagged behind (44 +/- 11 ms) and underestimated the actual peak pressures (2.3 +/- 1.1 mmHg). correlated with left ventricular systolic pressure (r = -0.68, P < 0.0001) and transmitral pressure gradients (r = 0.65, P < 0.0001). Because mitral inertance causes the velocity to lag significantly behind the actual pressure gradient, it needs to be considered when assessing diastolic filling and the pressure difference across normal mitral valves.  相似文献   

10.
The myogenic response, the inherent ability of blood vessels to rapidly respond to changes in transmural pressure, is involved in local blood flow autoregulation. Animal studies suggest that aging impairs the myogenic response. The purpose of this study was to compare the effects of changes in transmural pressure on mean blood velocity (MBV, cm/s) in young and older subjects. Twelve younger men and women (25 +/- 1 yr) were gender and body composition matched to twelve older men and women (65 +/- 1 yr). A specially designed tank raised or lowered forearm pressure by 50 mmHg within 0.2 s. Brachial artery MBV was measured directly above the site of forearm pressure change using Doppler methods. In response to increasing transmural pressure (i.e., release of +50 mmHg), older subjects compared with younger subjects had significantly lower peak MBV (Delta 12.43 +/- 1.16 vs. Delta 17.97 +/- 2.01 cm/s; P < 0.05), reduced rates in the dynamic fall of MBV after peak values were achieved (vasoconstriction) (-1.88 +/- 0.17 vs. -2.90 +/- 0.28 cm.s(-1).s(-1); P < 0.05), and lower MBV values with sustained suction. In response to decreasing transmural pressure (i.e., change to +50 mmHg), there was a significantly greater increase in MBV (Delta peak flow from trough 7.71 +/- 1.32 vs. 4.38 +/- 0.71 cm/s; P < 0.05) and a trend toward a greater rate of rise in MBV (vasodilation; 1.61 +/- 0.29 vs. 0.96 +/- 0.21 cm.s(-1).s(-1); P = 0.08) in the older subjects. Older subjects compared with the younger subjects exhibited decreased dynamic vasoconstriction, enhanced steady-state constriction, as well as evidence for enhanced dynamic vasodilation responses to sustained alterations in forearm transmural pressure.  相似文献   

11.
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.  相似文献   

12.
Mice are used with increasing frequency as models of human cardiovascular diseases, but significant gaps exist in our knowledge of vascular function in the aging mouse. We determined aortic input impedance spectra, pulse wave velocity, and augmentation index in adult (8-mo-old) and old (29-mo-old) mice to determine whether arterial stiffening occurred with age in mice as it does in humans. Pressure and blood velocity signals measured simultaneously from the same location in the ascending aorta were used to determine input impedance spectra (0-10 harmonics). The first minimum of the impedance modulus occurred at the second harmonic in adult mice but shifted to the fourth harmonic in old mice. Characteristic impedance (average of 2nd-10th harmonic) was 57% higher in old mice: 471 +/- 62 vs. 299 +/- 10 (SE) dyn.s.cm-3 (P < 0.05). Pulse pressure and augmentation index, determined from the aortic pressure signals, were also higher in old mice: 42 +/- 2.2 vs. 29 +/- 4.9 mmHg (P < 0.05) and 37 +/- 5 vs. 14 +/- 2% (P < 0.005). Aortic pulse wave velocity measured from the timing of upstrokes of the Doppler velocity signals was 45% higher in old mice: 416 +/- 22 vs. 286 +/- 14 cm/s (n = 3, P < 0.01). These results reproduce age-related findings reported in humans and confirm that mice may be used as models of age-related vascular stiffening.  相似文献   

13.
The growth, selection, regression and ovulation of ovarian follicles was ultrasonically monitored in 30 Murrah buffalo throughout a spontaneous estrous cycle during the breeding season (autumn). Examinations revealed that follicular growth during the estrous cycle occurs in waves; the buffalo showed 1-wave (3.3%, n = 1), 2-wave (63.3%, n = 19) or 3-wave (33.3%, n = 10) follicular growth. The first wave began at 1.00, 1.16 +/-0.50 and 1.10 +/- 0.32 d in buffalo with 1, 2 and 3 waves, respectively (ovulation = Day 0). The second wave appeared at 10.83 +/- 1.09 and 9.30 +/- 1.25 d (P < 0.01) for the 2 and 3 wave cycle animals, respectively. The third wave started at 16.80 +/- 1.22 d. Structural persistence of the first dominant follicle was longer in the 2- than 3-wave cycles (20.67 +/- 1.18 vs 17.90 +/- 3.47 d ; P < 0.05). The duration of the growth and static phases of the first dominant follicle differed between the 2 and 3 wave cycles (P < 0.05), whereas there were no differences in linear growth rates (cm/d). Two and three wave cycles differed (P < 0.05) with respect to the maximum diameter of both the first dominant follicle (1.51 +/- 0.24 vs 1.33 +/- 0.18 cm) and the ovulatory follicles (1.55 +/- 0.16 vs 1.34 +/- 0.13 cm). No relationship was found between dominant follicle development and the presence of either a CL or a previous dominant follicle in either ovary. Two and three wave cycles also differed with respect to the mean length of intervals between ovulation (22.27 +/- 0.89 vs 24.50 +/- 1.88 d; P < 0.01) and the mean length of luteal phases (10.40 +/- 2.11 vs 12.66 +/- 2.91 d; P < 0.05). These results demonstrate that buffalo have estrous cycles with 1, 2 or 3 follicular waves; that 2-wave cycles are the most common; and that the number of waves in a cycle is associated with the luteal phase and with estrous cycle length.  相似文献   

14.
The effects of vasopressin on colonic motility were investigated in 6 healthy subjects and 10 patients with chronic idiopathic constipation. Recordings of the colonic myoelectric spiking activity were performed by means of 50-cm long silastic tube, equipped with four bipolar ring electrodes fixed at 10-cm intervals, which was introduced by flexible colonoscopy into the left colon. Tracing were obtained for 1 h in the fasting state and for another hour after an intramuscular injection of a pharmacological dose of vasopressin (0.3 U/kg). The different types of spike bursts generated by the colonic smooth muscle were compared before and after vasopressin injection. In both controls and patients, the tracing showed (i) rhythmic stationary spike bursts (RSB) that were seen at only one electrode site; and (ii) sporadic bursts that were either propagating over all four electrodes (SPB) or nonpropagating (SNPB). Injection of vasopressin in controls was followed for 30 min by a significant increase in the number of propagating bursts from 2.7 +/- 0.6 (mean +/- SEM) to 5.2 +/- 1.4 bursts (p less than 0.05); RSB and SNPB were not altered by vasopressin. In the constipated patients, the number of propagating bursts during the control period was significantly lower (0.8 +/- 0.2 bursts/30 min) than in the volunteers (p less than 0.05). After vasopressin, there was a significant increase to 3.6 +/- 0.8 bursts/30 min (p less than 0.001); RSB and SNPB also did not show significant alteration after vasopressin. Finally, 4 out of the 10 patients passed stools during the recording session.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We tested the hypothesis that modest, overfeeding-induced weight gain would increase sympathetic neural activity in nonobese humans. Twelve healthy males (23 +/- 2 years; body mass index, 23.8 +/- 0.7) were overfed approximately 1,000 kcal/day until a 5-kg weight gain was achieved. Muscle sympathetic nerve activity (MSNA, microneurography), blood pressure, body composition (dual energy X-ray absorptiometry), and abdominal fat distribution (computed tomography) were measured at baseline and following 4 wk of weight stability at each individual's elevated body weight. Overfeeding increased body weight (73.5 +/- 3.1 vs. 78.4 +/- 3.2 kg, P < 0.001) and body fat (14.9 +/- 1.2 vs. 18 +/- 1.1 kg, P < 0.001) in 42 +/- 8 days. Total abdominal fat increased (220 +/- 22 vs. 266 +/- 22 cm(2), P < 0.001) with weight gain, due to increases in both subcutaneous (158 +/- 15 vs. 187 +/- 12 cm(2), P < 0.001) and visceral fat (63 +/- 8 vs. 79 +/- 12 cm(2), P = 0.004). As hypothesized, weight gain elicited increases in MSNA burst frequency (32 +/- 2 vs. 38 +/- 2 burst/min, P = 0.002) and burst incidence (52 +/- 4 vs. 59 +/- 3 bursts/100 heart beats, P = 0.026). Systolic, but not diastolic blood pressure increased significantly with weight gain. The change in MSNA burst frequency was correlated with the percent increase in body weight (r = 0.59, P = 0.022), change in body fat (r = 0.52, P = 0.043) and percent change in body fat (r = 0.51, P = 0.045). The results of the current study indicate that modest diet-induced weight gain elicits sympathetic neural activation in nonobese males. These findings may have important implications for understanding the link between obesity and hypertension.  相似文献   

16.
Although exercise training-induced changes in left ventricular (LV) structure are well characterized, adaptive functional changes are incompletely understood. Detailed echocardiographic assessment of LV systolic function was performed on 20 competitive rowers (10 males and 10 females) before and after endurance exercise training (EET; 90 days, 10.7 +/- 1.1 h/wk). Structural changes included LV dilation (end-diastolic volume = 128 +/- 25 vs. 144 +/- 28 ml, P < 0.001), right ventricular (RV) dilation (end-diastolic area = 2,850 +/- 550 vs. 3,260 +/- 530 mm2, P < 0.001), and LV hypertrophy (mass = 227 +/- 51 vs. 256 +/- 56 g, P < 0.001). Although LV ejection fraction was unchanged (62 +/- 3% vs. 60 +/- 3%, P = not significant), all direct measures of LV systolic function were altered. Peak systolic tissue velocities increased significantly (basal lateral S'Delta = 0.9 +/- 0.6 cm/s, P = 0.004; and basal septal S'Delta = 0.8 +/- 0.4 cm/s, P = 0.008). Radial strain increased similarly in all segments, whereas longitudinal strain increased with a base-to-apex gradient. In contrast, circumferential strain (CS) increased in the LV free wall but decreased in regions adjacent to the RV. Reductions in septal CS correlated strongly with changes in RV structure (DeltaRV end-diastolic area vs. DeltaLV septal CS; r2 = 0.898, P < 0.001) and function (Deltapeak RV systolic velocity vs. DeltaLV septal CS, r2 = 0.697, P < 0.001). EET leads to significant changes in LV systolic function with regional heterogeneity that may be secondary to concomitant RV adaptation. These changes are not detected by conventional measurements such as ejection fraction.  相似文献   

17.
The syndrome of inappropriate antidiuretic hormone (SIADH) is characterized by euvolemic hyponatremia. Patients with SIADH continue to drink normal amounts of fluid, despite plasma osmolalities well below the physiological osmotic threshold for onset of thirst. The regulation of thirst has not been previously studied in SIADH. We studied the characteristics of osmotically stimulated thirst and arginine vasopressin (AVP) secretion in eight subjects with SIADH and eight healthy controls and the nonosmotic suppression of thirst and AVP during drinking in the same subjects. Subjects underwent a 2-h infusion of hypertonic (855 mmol/l) NaCl solution, followed by 30 min of free access to water. Thirst rose significantly in both SIADH (1.5 +/- 0.6 to 8.0 +/- 1.2 cm, P < 0.0001) and controls (1.8 +/- 0.8 to 8.4 +/- 1.5 cm, P < 0.0001), but the osmotic threshold for thirst was lower in SIADH (264 +/- 5.5 vs. 285.9 +/- 2.8 mosmol/kgH(2)O, P < 0.0001). SIADH subjects drank volumes of water similar to controls after cessation of the infusion (948.8 +/- 207.6 vs. 1,091 +/- 184 ml, P = 0.23). The act of drinking suppressed thirst in both SIADH and controls but did not suppress plasma AVP concentrations in SIADH compared with controls (P = 0.007). We conclude that there is downward resetting of the osmotic threshold for thirst in SIADH but that thirst responds to osmotic stimulation and is suppressed by drinking around the lowered set point. In addition, we demonstrated that drinking does not completely suppress plasma AVP in SIADH.  相似文献   

18.
This study tested the hypothesis that passive heat stress alters cerebrovascular responsiveness to steady-state changes in end-tidal CO(2) (Pet(CO(2))). Nine healthy subjects (4 men and 5 women), each dressed in a water-perfused suit, underwent normoxic hypocapnic hyperventilation (decrease Pet(CO(2)) approximately 20 Torr) and normoxic hypercapnic (increase in Pet(CO(2)) approximately 9 Torr) challenges under normothermic and passive heat stress conditions. The slope of the relationship between calculated cerebrovascular conductance (CBVC; middle cerebral artery blood velocity/mean arterial blood pressure) and Pet(CO(2)) was used to evaluate cerebrovascular CO(2) responsiveness. Passive heat stress increased core temperature (1.1 +/- 0.2 degrees C, P < 0.001) and reduced middle cerebral artery blood velocity by 8 +/- 8 cm/s (P = 0.01), reduced CBVC by 0.09 +/- 0.09 CBVC units (P = 0.02), and decreased Pet(CO(2)) by 3 +/- 4 Torr (P = 0.07), while mean arterial blood pressure was well maintained (P = 0.36). The slope of the CBVC-Pet(CO(2)) relationship to the hypocapnic challenge was not different between normothermia and heat stress conditions (0.009 +/- 0.006 vs. 0.009 +/- 0.004 CBVC units/Torr, P = 0.63). Similarly, in response to the hypercapnic challenge, the slope of the CBVC-Pet(CO(2)) relationship was not different between normothermia and heat stress conditions (0.028 +/- 0.020 vs. 0.023 +/- 0.008 CBVC units/Torr, P = 0.31). These results indicate that cerebrovascular CO(2) responsiveness, to the prescribed steady-state changes in Pet(CO(2)), is unchanged during passive heat stress.  相似文献   

19.
In an in vitro model for distention-induced peristalsis in the guinea pig small intestine, the electrical activity, intraluminal pressure, and outflow of contents were studied simultaneously to search for evidence of myogenic control activity. Intraluminal distention induced periods of nifedipine-sensitive slow wave activity with superimposed action potentials, alternating with periods of quiescence. Slow waves and associated high intraluminal pressure transients propagated aborally, causing outflow of content. In the proximal small intestine, a frequency gradient of distention-induced slow waves was observed, with a frequency of 19 cycles/min in the first 1 cm and 11 cycles/min 10 cm distally. Intracellular recording revealed that the guinea pig small intestinal musculature, in response to carbachol, generated slow waves with superimposed action potentials, both sensitive to nifedipine. These slow waves also exhibited a frequency gradient. In addition, distention and cholinergic stimulation induced high-frequency membrane potential oscillations (~55 cycles/min) that were not associated with distention-induced peristalsis. Continuous distention produced excitation of the musculature, in part neurally mediated, that resulted in periodic occurrence of bursts of distally propagating nifedipine-sensitive slow waves with superimposed action potentials associated with propagating intraluminal pressure waves that caused pulsatile outflow of content at the slow wave frequency.  相似文献   

20.
Occasionally, lifting of a heavy weight leads to dizziness and even to fainting, suggesting that, especially in the standing position, expiratory straining compromises cerebral perfusion. In 10 subjects, the middle cerebral artery mean blood velocity (V(mean)) was evaluated during a Valsalva maneuver (mouth pressure 40 mmHg for 15 s) both in the supine and in the standing position. During standing, cardiac output decreased by 16 +/- 4 (SE) % (P < 0.05), and at the level of the brain mean arterial pressure (MAP) decreased from 89 +/- 2 to 78 +/- 3 mmHg (P < 0.05), as did V(mean) from 73 +/- 4 to 62 +/- 5 cm/s (P < 0.05). In both postures, the Valsalva maneuver increased central venous pressure by approximately 40 mmHg with a nadir in MAP and cardiac output that was most pronounced during standing (MAP: 65 +/- 6 vs. 87 +/- 3 mmHg; cardiac output: 37 +/- 3 vs. 57 +/- 4% of the resting value; P < 0.05). Also, V(mean) was lowest during the standing Valsalva maneuver (39 +/- 5 vs. 47 +/- 4 cm/s; P < 0.05). In healthy individuals, orthostasis induces an approximately 15% reduction in middle cerebral artery V(mean) that is exaggerated by a Valsalva maneuver performed with 40-mmHg mouth pressure to approximately 50% of supine rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号