首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that MK-801 (dizocilpine), an antagonist of N-methyl-D-aspartate (NMDA)-type glutamate receptors, increased meal size and duration in rats. MK-801 did not increase sham feeding or attenuate reduction of sham feeding by intraintestinal nutrient infusions. These results suggested that the MK-801-induced increase in meal size did not depend on antagonism of postgastric satiety signals. Consequently, we hypothesized that the NMDA antagonist might increase food intake by directly antagonizing gastric mechanosensory signals or by accelerating gastric emptying, thereby reducing gastric mechanoreceptive feedback. To test this hypothesis, we recorded intake of 15% sucrose in rats implanted with pyloric cuffs that could be closed to prevent gastric emptying. Sucrose intake was increased when the pyloric cuffs were open, allowing the stomach to empty. However, intake was not increased when the pyloric cuffs were inflated, causing gastric retention of all ingested sucrose. Direct measurements of gastric emptying revealed that MK-801 accelerated the emptying of 5-ml loads of 0.9% NaCl and 15% sucrose. Furthermore, MK-801 also accelerated the rate of emptying of freely ingested sucrose regardless of the volume ingested. Taken together with our previous findings, these results indicate that blockade of NMDA receptors with MK-801 does not increase food intake by antagonizing gastric mechanosensation. Rather, it accelerates gastric emptying, and thereby may indirectly reduce gastric mechanoreceptive cues, resulting in prolongation of eating. Modulation of gastric emptying rate by NMDA receptors could play an important role in the control of meal sizes.  相似文献   

2.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

3.
MK-801, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, enhances gastric emptying while increasing food intake. Although our previously reported results implicate the vagus in MK-801's effect on feeding, it is not clear whether vagal motor fibers participate in the feeding response. Control of gastric emptying is exerted, in part, by cholinergic vagal motor neurons. Therefore, we examined the ability of MK-801 to increase meal size in the presence or absence of the muscarinic receptor antagonist atropine methyl nitrate. Both central and systemic administration of MK-801 significantly increased intake of 15% sucrose. Intraperitoneal injection of atropine abolished MK-801-induced increase in sucrose intake, whereas administration into the fourth ventricle had no effect. To determine whether augmentation of cholinergic tone produces an enhancement of food intake in the absence of MK-801, we tested the ability of cisapride, a gastric prokinetic agent that promotes acetylcholine release through an action on presynaptic serotonin (5-HT4) receptors, to increase sucrose consumption. Cisapride (500 microg/kg ip) induced a small but significant increase in 15% sucrose intake (15.5 +/- 0.5 ml) compared with NaCl (13.0 +/- 0.6 ml). Furthermore, when MK-801 (100 microg/kg ip) was given in combination with cisapride, intake was significantly higher (19.8 +/- 0.9 ml) than following either agent given alone. Pretreatment with atropine abolished the cisapride-induced increase in intake (12.1 +/- 0.9 ml) as well as the increased intake induced by combining MK-801 and cisapride. These results suggest that blockade of NMDA-gated ion channels in the hindbrain increases food intake, in part, via a peripheral muscarinic cholinergic mechanism.  相似文献   

4.
Systemic or hindbrain administration of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, increases meal size. To examine whether MK-801 enhances intake by increasing gastric emptying, we administered MK-801 (2.0 microg/3.0 microl) into the fourth ventricle [intracerebroventricular (ICV)] and measured feeding and gastric emptying of 5-ml NaCl or 15% sucrose loads. In a parallel experiment, we examined food intake and gastric emptying following intraperitoneal (IP) injection of MK-801 (100 microg/kg). MK-801, either IP or ICV, increased 30-min sucrose intake compared with control (12.3 +/- 0.7 vs. 9.8 +/- 0.5 and 16.6 +/- 2.0 vs. 10.7 +/- 0.7 ml, for IP and ICV administration, respectively). Also, IP MK-801 increased 5-min gastric emptying of NaCl (4.13 +/- 0.1 ml emptied) and sucrose (3.11 +/- 0.1 ml emptied) compared with control (3.75 +/- 0.2 and 2.28 +/- 0.1 ml emptied for NaCl and sucrose loads, respectively). In contrast, ICV MK-801 did not alter NaCl emptying (3.82 +/- 0.1 ml emptied) compared with control (3.82 +/- 0.3 ml emptied) and actually reduced gastric emptying of sucrose (2.1 +/- 0.2 and 2.94 +/- 0.1 ml emptied, for MK and vehicle, respectively). These data confirm previous results that systemic as well as hindbrain injection of MK-801 increases food intake. However, because ICV MK-801 failed to increase gastric emptying, these results indicate that MK-801 increases food intake through mechanisms independent of altered gastric emptying.  相似文献   

5.
The N-methyl-D-aspartate (NMDA) ion channel blocker MK-801 administered systemically or as a nanoliter injection into the nucleus of the solitary tract (NTS), increases meal size. Furthermore, we have observed that ablation of the NTS abolishes increased meal size following systemic injection of dizocilpine (MK-801) and that MK-801-induced increases in intake are attenuated in rats pretreated with capsaicin to destroy small, unmyelinated, primary afferent neurons. These findings led us to hypothesize that NMDA receptors on central vagal afferent terminals or on higher-order NTS neurons innervated by these vagal afferents might mediate increased food intake. To evaluate this hypothesis, we examined 15% sucrose intake after 50-nl MK-801 injections ipsilateral or contralateral to unilateral nodose ganglion removal (ganglionectomy). On the side contralateral to ganglionectomy, vagal afferent terminals would be intact and functional, whereas ipsilateral to ganglionectomy vagal afferent terminals would be absent. Three additional control preparations also were included: 1) sham ganglionectomy and 2) subnodose vagotomy either contralateral or ipsilateral to NTS cannula placement. We found that rats with subnodose vagotomies increased their sucrose intake after injections of MK-801 compared with saline, regardless of whether injections were made contralateral (12.6 +/- 0.2 vs. 9.6 +/- 0.3 ml) or ipsilateral (14.2 +/- 0.6 vs. 9.7 +/- 0.4 ml) to vagotomy. Rats with NTS cannula placements contralateral to nodose ganglionectomy also increased their intake after MK-801 (12.2 +/- 0.9 and 9.2 +/- 1.1 ml for MK-801 and saline, respectively). However, rats with placements ipsilateral to ganglionectomy did not respond to MK-801 (8.0 +/- 0.5 ml) compared with saline (8.3 +/- 0.4 ml). We conclude that central vagal afferent terminals are necessary for increased food intake in response to NMDA ion channel blockade. The function of central vagal afferent processes or the activity of higher-order NTS neurons driven by vagal afferents may be modulated by NMDA receptors to control meal size.  相似文献   

6.
We have previously shown that serotonin type-3 (5-HT3) receptors mediate cholecystokinin (CCK)-induced satiation and that this effect is dependent on postoropharyngeal feedback. However, the independent contributions of gastric and intestinal feedback in 5-HT3 receptor mediation of suppression of food intake by CCK have not been determined. Using a sham-feeding preparation combined with intraduodenal sucrose infusion, we show that blockade of 5-HT3 receptors by ondansetron (1 mg/kg ip) had no effect on suppression of sham feeding by intraduodenal 15% sucrose infusion (4 ml/10 min), CCK (2 microg/kg ip) administration, or the combination of the two treatments. In separate experiments consisting of either sham-feeding rats that received gastric distension with the use of a balloon or real-feeding rats whose stomachs were distended using gastric loads of saline after the occlusion of the pylorus, we tested the hypothesis that gastric feedback signals are necessary for activation of 5-HT3 receptors. Ondansetron significantly attenuated suppression of sham sucrose intake after a 10-ml gastric balloon distension (30.5 +/- 2.2 vs. 20.2 +/- 2.2 ml, respectively) and gastric distension combined with CCK (21.9 +/- 1.4 vs. 12.0 +/- 1.7 ml, respectively). When intestinal feedback was eliminated in a real-feeding paradigm by closing the pylorus using a cuff preparation, ondansetron attenuated suppression of sucrose intake produced by a 10-ml saline gastric load (6.8 +/- 0.7 vs. 4.2 +/- 0.4 ml, respectively). Finally, when CCK (1 microg/kg) was administered in combination with a 5-ml saline gastric load in a real-feeding preparation, ondansetron significantly attenuated suppression of sucrose intake by CCK (9.0 +/- 0.9 vs. 6.3 +/- 0.5 ml, respectively), as well as the enhanced suppression of intake by CCK plus gastric load (6.9 +/- 0.6 vs. 4.6 +/- 0.5 ml, respectively). These findings demonstrate that CCK-induced activation of 5-HT3 receptors requires gastric, but not intestinal feedback.  相似文献   

7.
The sham intake of concentrated, but not weak, milk solutions requires up to three sham-feeding tests for intake to reach maximum (7). It is well known that the sham intake of concentrated (0.8 M) sucrose requires three or more sham-feeding tests to reach its maximum (4, 6, 17), but it is not known if this occurs with weaker sucrose solutions. We investigated this question by measuring the sham intake of seven concentrations of sucrose (0.025, 0.05, 0.1, 0. 2, 0.4, 0.6, and 0.8 M) during five sham-feeding tests. Sham intake of the three highest concentrations required up to three sham-feeding tests to reach maximum. Sham intake of the four lowest concentrations reached maximum in the first sham-feeding test. Our results show that the type of negative feedback that controls the intake of sucrose depends on its concentration. With weak solutions, intake is limited by a single direct, physiological, negative-feedback signal. When concentrated solutions are ingested, intake is controlled jointly by a direct physiological signal operating in conjunction with a labile one that loses its effectiveness with sham-feeding experience.  相似文献   

8.
Reportedly, excitatory amino acids are involved in the control of gonadotropin secretion of rats and non-human primates. The aim of this study was to investigate the effect of chronic blockade of NMDA (N-methyl-D-aspartic acid) receptors by the non competitive receptor antagonist MK-801 on gonadotropin secretion and the onset of puberty in female rats. Moreover, since in humans alterations of the timing of puberty frequently coexist with disturbances of body growth, suggesting a common etiology for both events, we evaluated the effect of MK-801 also on the neural mechanisms controlling growth hormone (GH) secretion. Twenty-one-day-old female rats were treated with MK-801 (0.2 mg/kg ip, bid) or placebo for 10 days and were killed after 7 days of withdrawal. Administration of MK-801 induced a significant impairment of growth rate without altering food intake, and a delay in vaginal opening. Pituitaries from rats treated with MK-801 had a reduced luteinizing hormone (LH) content, and secreted in vitro lower amounts of LH both under basal and LHRH-stimulated conditions. MK-801 treated rats had a lower pituitary GH content and basal and GHRH-stimulated GH release and reduced plasma insulin-like growth factor-I levels. These data indicate that blockade of NMDA receptors in a critical period of the female rat life-span: 1) delays puberty by reducing gonadotropin secretion; 2) impairs growth rate by reducing GH secretion, with a mechanism still to be clarified.  相似文献   

9.
Hindbrain administration of MK-801, a noncompetitive N-methyl-D-aspartate (NMDA) channel blocker, increases meal size, suggesting NMDA receptors in this location participate in control of food intake. However, dizocilpine (MK-801) reportedly antagonizes some non-NMDA ion channels. Therefore, to further assess hindbrain NMDA receptor participation in food intake control, we measured deprivation-induced intakes of 15% sucrose solution or rat chow after intraperitoneal injection of either saline vehicle or D(-)-2-amino-5-phosphonopentanoic acid (AP5), a competitive NMDA receptor antagonist, to the fourth ventricular, or nucleus of the solitary tract (NTS). Intraperitoneal injection of AP5 (0.05, 0.1, 1.0, 3.0, and 5.0 mg/kg) did not alter 30-min sucrose intake at any dose (10.7 +/- 0.4 ml, saline control) (11.0 +/- 0.8, 11.2 +/- 1.0, 11.2 +/- 1.0, 13.1 +/- 2.2, and 11.0 +/- 1.9 ml, AP5 doses, respectively). Fourth ventricular administration of both 0.2 mug (16.7 +/- 0.6 ml) and 0.4 mug (14.9 +/- 0.5 ml) but not 0.1 and 0.6 mug of AP5 significantly increased 60-min sucrose intake compared with saline (11.2 +/- 0.4 ml). Twenty-four hour chow intake also was increased compared with saline (AP5: 31.5 +/- 0.1 g vs. saline: 27.1 +/- 0.6 g). Furthermore, rats did not increase intake of 0.2% saccharin after fourth ventricular AP5 administration (AP5: 9.8 +/- 0.7 ml, vs. saline: 10.5 +/- 0.5 ml). Finally, NTS AP5 (20 ng/30 nl) significantly increased 30- (AP5: 17.2 +/- 0.7 ml vs. saline: 14.6 +/- 1.7 ml), and 60-min (AP5: 19.4 +/- 0.6 ml vs. saline: 15.5 +/- 1.4 ml) sucrose intake, as well as 24-h chow intake (AP5: 31.6 +/- 0.3 g vs. saline: 26.1 +/- 1.2 g). These results support the hypothesis that hindbrain NMDA receptors participate in control of food intake and suggest that this participation also may contribute to control of body weight over a 24-h period.  相似文献   

10.
The analgesia effects of intrathecal adenosine A1 receptor agonist, R-PIA, on the hyperalgesia and CSF-glutamate release after formalin injection into the rat paw were evaluated. R-PIA significantly and dose-dependently attenuated increases in flinching behavior, and this attenuating effect was reversed by the adenosine A1 receptor antagonist, aminophylline. Morphine blocked flinchs, however MK-801 partially abolished. The increase in CSF-glutamate release evoked by formalin stimulation was inhibited by morphine but not by either R-PIA or MK-801. These findings suggest that the intrathecal adenosine A1 receptor agonist provokes analgesic effect via the postsynaptic action independent of an effect upon spinal glutamate release.  相似文献   

11.
Vigilance and parallel occurrence of epileptic activity after administration of the 5-HT1A agonist 8-OH-DPAT and the NMDA receptor antagonist MK-801 were studied in the genetic absence epilepsy model WAG/Rij rats. Spike-wave discharges (SWD) were present predominantly in passive awake and light slow wave sleep (SWS1) either in control animals or after treatments. Injection of 8-OH-DPAT (20.0 μg/rat i.c.v.) caused marked increase and MK-801 (10.0 μg/rat i.c.v.) decrease in SWD densities, thus the ratios of SWD in passive awake and in SWS1. SWD densities of MK-801 plus 8-OH-DPAT in combination were similar to those of CSF+CSF treated control rats. Both 8-OH-DPAT and MK-801 transiently increased the duration of active awake, increased latency and decreased duration of rapid eye movement (REM) sleep. 8-OH-DPAT increased the amount of SWD despite the decrease in the duration of SWS1. MK-801 decreased the amount of SWD despite the lack of significant change in duration of passive awake or SWS1. Pre-treatment with MK-801 reversed 8-OH-DPAT- induced increase in duration of SWD without any effect on 8-OH-DPAT-induced changes in sleep parameters. Our studies provide evidence that 8-OH-DPAT-induced epileptic activity is independent of its effect on sleep, and that interaction of serotonergic and glutamatergic systems plays a role in the generation of SWD, but not in the regulation of vigilance and sleep.  相似文献   

12.
Summary The putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus acumbens (NAC) and the behavioural stimulation induced by systemically administered dizocilpine (MK-801) was investigated. Microdialysis was utilized in rats with probes in the VTA and NAC. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1.0 mM) or vehicle and dialysates from the NAC were analyzed with high-performance liquid chromatography for DA. Forty min after onset of CNQX or vehicle perfusion of the VTA MK-801 (0.1 mg/kg) was injected subcutaneously (sc). Subsequently, typical MK-801 induced behaviours were assessed. The MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC were effectively antagonized by CNQX perfusion of the VTA. However, by itself the CNQX or vehicle perusion of the VTA did not affect DA levels in NAC or the rated behaviours. The results indicate that MK-801 induced hyperlocomotion and increased DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by locally increased EAA release. In contrast, the enhanced DA output in the NAC induced by systemic nicotine (0.5 mg/kg sc) was not antagonized by intra VTA infusion of CNQX (0.3 or 1.0 mM), but instead by infusion of the NMDA receptor antagonist AP-5 (0.3 or 1.0 mM) into the VTA, which by itself did not alter DA levels in the NAC. Thus, the probably indirect, EAA mediated activation of the mesolimbic DA neurons in the VTA by MK-801 and nicotine, respectively, seems to be mediated via different glutamate receptor subtypes.  相似文献   

13.
Li SQ  Li WB  Sun XC  Li QJ  Chen XL  Ai J 《生理学报》2004,56(1):66-72
应用免疫组织化学方法,观察鞘内注射N-methyl—D—aspartate(NMDA)受体拮抗剂MK-801对福尔马林实验引起的大鼠脊髓背角环氧合酶-2(cyclooxygenase-2,COX-2)表达的影响。结果表明:MK-801对福尔马林实验引起的第1相缩足反射仅有一定抑制作用,但对第2相缩足反射有显著的抑制作用,且呈剂量依赖性。与这种行为学的变化相对应,MK-801可显著抑制福尔马林实验引起的脊髓背角COX-2表达的增加,并且这种抑制作用与MK-801的剂量呈正相关。这些结果表明,在福尔马林实验中,NMDA受体的活动是引起脊髓背角COX-2表达增加的原因之一。  相似文献   

14.
In vivo demonstration of the enhancement of MK-801 by L-glutamate   总被引:1,自引:0,他引:1  
MK-801 infused bilaterally into the nucleus accumbens of rats produced a dose-related increase in locomotor activity that was not blocked by intra-accumbens infusion of haloperidol (2.5 micrograms). Intra-accumbens infusion of L-glutamate (1.0 microgram) was without effect when administered alone, but significantly enhanced the increase in locomotor activity produced by MK-801 (5.0 micrograms). The inactive isomer of MK-801 did not produce hypermotility and L-glutamate did not enhance amphetamine(intra-accumbens)-induced hypermotility. These results extend to an in vivo model electrophysiological and radioligand binding studies demonstrating an enhancement of MK-801 activity by L-glutamate. The results also reinforce the concept that such an enhancement would occur during an escalation of excitatory amino acid levels accompanying pathological overload and, thus, would trigger a compensatory neuronal protection by MK-801.  相似文献   

15.
Previous studies have shown that identified neurons of the nucleus of the solitary tract (NST) are excited by the cytokine tumor necrosis factor-alpha (TNF-alpha). Vagal afferent connections with the NST are predominantly glutaminergic. Therefore, we hypothesized that TNF-alpha effects on NST neurons may be via modulation of glutamate neurotransmission. The present study used activation of the immediate early gene product c-Fos as a marker for neuronal activation in the NST. c-Fos expression was evaluated after microinjections of TNF-alpha in the presence or absence of either the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium (NBQX) or the N-methyl-D- aspartate (NMDA) antagonist MK-801. To assess the specificity of the interaction between TNF-alpha and glutamate, c-Fos expression was also evaluated after injection of oxytocin (OT) (which has a direct excitatory effect in this area of the brain stem) in the presence and absence of NBQX or MK-801. c-Fos labeling was significantly increased in the NST after TNF-alpha exposure. Coinjection of either NBQX or MK-801 with TNF-alpha prevented significant c-Fos induction in the NST. Microinjections of OT also induced significant NST c-Fos elevation, but this expression was unaffected by coinjection of either antagonist with OT. These data lead us to conclude that TNF-alpha activation of NST neurons depends on glutamate and such an interaction is not generalized to all agonists that act on the NST.  相似文献   

16.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

17.
Akira Takashima  Yumino Maeda  Shinji Itoh   《Peptides》1990,11(6):1263-1267
The effect of subcutaneous injection of caerulein on memory impairment induced by intracerebroventricular administration of NMDA receptor antagonists was examined in the passive avoidance response of the rat. When rats were treated with AP5, AP7, CPP or MK-801, the retention latencies decreased markedly. However, in rats that received caerulein immediately after the training trials, the latency increased to some extent. Pretreatment with caerulein and subsequent injection of the competitive NMDA receptor antagonists AP5, AP7 and CPP caused a more apparent increase in the latency. The noncompetitive NMDA receptor antagonist MK-801 was not affected by pretreatment with caerulein. The difference might be, at least in part, due to the sites of action of these NMDA receptor antagonists.  相似文献   

18.
Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that intraperitoneal (IP) administration of either competitive or noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists attenuates reduction of food intake by CCK. However, because vagal afferents themselves express NMDA receptors at both central and peripheral endings, our results did not speak to the question of whether NMDA receptors in the brain play an essential role in reduction of feeding by CCK. We hypothesized that activation of NMDA receptors in the NTS is necessary for reduction of food intake by CCK. To test this hypothesis, we measured food intake following IP CCK, subsequent to NMDA receptor antagonist injections into the fourth ventricle, directly into the NTS or subcutaneously. We found that either fourth-ventricle or NTS injection of the noncompetitive NMDA receptor antagonist MK-801 was sufficient to inhibit CCK-induced reduction of feeding, while the same antagonist doses injected subcutaneously did not. Similarly fourth ventricle injection of d-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphoric acid (d-CPPene), a competitive NMDA receptor antagonist, also blocked reduction of food intake following IP CCK. Finally, d-CPPene injected into the fourth ventricle attenuated CCK-induced expression of nuclear c-Fos immunoreactivity in the dorsal vagal complex. We conclude that activation of NMDA receptors in the hindbrain is necessary for the reduction of food intake by CCK. Hindbrain NMDA receptors could comprise a critical avenue for control and modulation of satiation signals to influence food intake and energy balance.  相似文献   

19.
Apolipoprotein E (ApoE) deficiency has been shown to adversely affect outcome after transient cerebral ischemia and head trauma. Since oxidative stress contributes to these injuries, the ability of ApoE to reduce irreversible oxidative damage was studied in primary mixed neuronal-glial cell cultures. Cells (13-16 days in vitro) were exposed to 50 microM hydrogen peroxide (H2O2) for 30 min, and toxicity was determined by the release of lactate dehydrogenase (LDH) 24 h after exposure. The presence of recombinant human ApoE2 (100, 300, or 1000 nM) in the culture media partially protected against oxidative injury. This protection was not reversed by pre-treatment with receptor associated protein. The NMDA receptor antagonist, MK-801, also provided partial protection against H2O2 toxicity. The degree of protection was similar to that conferred by ApoE treatment. The protective effects of ApoE and MK-801 were not additive; no ApoE protection was observed in cultures treated with MK-801 prior to H2O2 exposure. ApoE treatment had no effect on H2O2 stimulated glutamate release, but did increase the rate of glutamate uptake via the high affinity glutamate transporter in H2O2 treated cultures. Pre-treatment with ApoE also conferred partial protection against glutamate-induced LDH release. Taken together, these findings suggest that ApoE protects mixed neuronal-glial cell cultures against irreversible oxidative injury from H2O2 by reducing secondary glutamate excitotoxicity.  相似文献   

20.
目的:观察鞘内给予N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂MK-801对足底注射甲醛诱导的自发痛反应和海马一氧化氮合酶(NOS)表达及一氧化氮(N0)含量的影响,探讨炎性痛诱导海马NO产生增多的机制。方法:通过观察舔足反射时间反映大鼠自发痛程度;采用NADPH—d组织化学法测定大鼠海马NOS表达;硝酸还原酶法测定海马组织NO含量。结果:足底注射甲醛后动物即出现舔、咬、摇动注射侧脚掌等自发痛相关表现,预先鞘内注射MK-801可使大鼠第二时相自发病程度显著降低,但对第一时相痛反应程度无明显影响。注射甲醛后12h时,海马CA1、CA2~3区及DG区NOS阳性细胞数目、阳性细胞染色深度均显著增加,海马组织NO含量显著增加;预先鞘内注射MK-801,可使甲醛炎性痛大鼠海马各区NOS阳性细胞数目明显减少,阳性细胞染色深度明显变浅,海马NO含量明显降低。结论:鞘内注射MK-801可逆转甲醛炎性痛诱导的海马NOS表达及NO产生的增加,表明甲醛炎性痛诱导的海马NO产生增加主要是由于伤害性信息传入所引起。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号