共查询到20条相似文献,搜索用时 15 毫秒
1.
Saengsirisuwan V Perez FR Sloniger JA Maier T Henriksen EJ 《American journal of physiology. Endocrinology and metabolism》2004,287(3):E529-E536
We have shown previously (Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ. J Appl Physiol 91: 145-153, 2001) that the antioxidant R-(+)-alpha-lipoic acid (R-ALA), combined with endurance exercise training (ET), increases glucose transport in insulin-resistant skeletal muscle in an additive fashion. The purpose of the present study was to investigate possible cellular mechanisms responsible for this interactive effect. We evaluated the effects of R-ALA alone, ET alone, or R-ALA and ET in combination on insulin-stimulated glucose transport, protein expression, and functionality of specific insulin-signaling factors in soleus muscle of obese Zucker (fa/fa) rats. Obese animals remained sedentary, received R-ALA (30 mg.kg body wt(-1).day(-1)), performed ET (daily treadmill running for < or =60 min), or underwent both R-ALA treatment and ET for 15 days. R-ALA or ET individually increased (P < 0.05) insulin-mediated (5 mU/ml) glucose transport (2-deoxyglucose uptake) in soleus muscle by 45 and 68%, respectively, and this value was increased to the greatest extent (124%) in the combined treatment group. Soleus insulin receptor substrate (IRS)-1 protein was significantly increased by R-ALA alone (30%) or ET alone (31%), and a further enhancement (55%) was observed after the combination treatment in the obese animals. Enhanced levels of IRS-1 protein expression after individual or combined interventions were significantly correlated with insulin action on glucose transport activity (r = 0.597, P = 0.0055). Similarly, insulin-mediated IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase was increased by R-ALA (317%) and ET (319%) and to the greatest extent (435%) (all P < 0.05) by the combination treatment. These results indicate that the improvements of insulin action in insulin-resistant skeletal muscle after R-ALA or ET, alone and in combination, were associated with increases in IRS-1 protein expression and IRS-1 associated with p85. 相似文献
2.
Pan SJ Hancock J Ding Z Fogt D Lee M Ivy JL 《American journal of physiology. Endocrinology and metabolism》2001,280(4):E554-E561
The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues. 相似文献
3.
4.
M S Steen K R Foianini E B Youngblood T R Kinnick S Jacob E J Henriksen 《Journal of applied physiology》1999,86(6):2044-2051
Exercise training or chronic treatment with angiotensin-converting enzyme (ACE) inhibitors can ameliorate glucose intolerance, insulin resistance of muscle glucose metabolism, and dyslipidemia associated with the obese Zucker rat. The purpose of the present study was to determine the interactions of exercise training and ACE inhibition (trandolapril) on these parameters in the obese Zucker rat. Animals were assigned to a sedentary control, a trandolapril-treated (1 mg. kg-1. day-1 for 6 wk), an exercise-trained (treadmill running for 6 wk), or a combined trandolapril-treated and exercise-trained group. Exercise training, alone or with trandolapril, significantly (P < 0. 05) increased peak O2 consumption by 31-34%. Similar decreases in fasting plasma insulin (34%) and free fatty acids (31%) occurred with exercise training alone or in combination with trandolapril. Compared with control, exercise training or trandolapril alone caused smaller areas under the curve (AUC) for glucose (12-14%) and insulin (28-33%) during an oral glucose tolerance test. The largest decreases in the glucose AUC (40%) and insulin AUC (53%) were observed in the combined group. Similarly, whereas exercise training or trandolapril alone improved maximally activated insulin-stimulated glucose transport in isolated epitrochlearis (26-34%) or soleus (39-41%) muscles, the greatest improvements in insulin action (67 and 107%, respectively) were seen in the combined group and were associated with similarly enhanced muscle GLUT-4 protein and total hexokinase levels. In conclusion, these results indicate combined exercise training and ACE inhibition improve oral glucose tolerance and insulin-stimulated muscle glucose transport to a greater extent than does either intervention alone. 相似文献
5.
Javier Moral-Sanz Carmen Menendez Laura Moreno Enrique Moreno Angel Cogolludo Francisco Perez-Vizcaino 《Respiratory research》2011,12(1):51
Background
Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat.Methods
Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique.Results
Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance) pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT) was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W.Conclusions
In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS. 相似文献6.
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance. 相似文献
7.
D G Baskin L J Stein H Ikeda S C Woods D P Figlewicz D Porte M R Greenwood D M Dorsa 《Life sciences》1985,36(7):627-633
The concentration of immunoreactive insulin (IRI) extracted from the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, amygdala, midbrain, and hindbrain was significantly lower in obese (fa/fa) and heterozygous (Fa/fa) Zucker rats in comparison to lean (Fa/Fa) Zucker rats. This deficit in brain IRI content was most severe in the hypothalamus and olfactory bulb and was independent of severe obesity since the marked reduction of brain IRI content was also found in heterozygous rats which possessed only one copy of the fa allele. These results demonstrate that in the 2-3 month-old female Zucker rat, the fa allele is associated with defective regulation of insulin in the brain. 相似文献
8.
Cholecystokinin (CCK), a hormone affecting several gastrointestinal functions, has also been shown to elicit satiety and affect daily meal patterns. Since Zucker obese rats are less sensitive to the satiety effects of CCK, two experiments were designed to determine if they are also less sensitive to the gastric emptying and intestinal transit rate effects of CCK. In the first experiment phenol red was administered to 5.5 hr fasted rats 15 minutes after intraperitoneal injection of CCK-8 or saline. Rats were sacrificed after 30 minutes, the stomach and small intestine were removed, and phenol red content was measured. More phenol red was in the stomach of obese but not lean rats treated with CCK-8. The rate of transit of the contents of the small intestine was increased by CCK-8 and the percent of phenol red in the fourth quarter of the small intestine was greater in obese than lean rats (91 vs 37%, p<0.05). In the second experiment gastrointestinal transit of ferric oxide was measured during the light and dark phases of the diurnal cycle, and when obese rats were ad lib or yoke-fed to lean pair-mates. Total gastrointestinal transit time of the ferric oxide was decreased 15% when CCK-8 was administered to yoke-fed obese rats in either the light or dark portions of the diurnal cycle but was not affected in ad lib-fed obese rats or lean rats. Thus, while Zucker obese rats are less sensitive to satiety effects of CCK, they appear to be more sensitive to the gastrointestinal effects of CCK, and therefore it is not clear what role these gastrointestinal responses have on the feeding behavior responses. 相似文献
9.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals. 相似文献
10.
Dokken BB Henriksen EJ 《American journal of physiology. Endocrinology and metabolism》2006,291(2):E207-E213
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance. 相似文献
11.
12.
Warren LE Hoban-Higgins TM Hamilton JS Horwitz BA Fuller CA 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》2000,7(3):61-69
Changes in the ambient force environment alter the regulation of adiposity, food intake and energy expenditure (i.e., energy balance). Lean (Fa/Fa) and obese (fa/fa) male Zucker rats were exposed to 2G (twice Earth's normal gravity) for eight weeks via centrifugation to test the hypothesis that the Fa/Fa rats recover to a greater degree from the effects of an increased ambient force environment on body mass and food intake, than do the fa/fa rats which have a dysfunctional leptin regulatory system. The rats (lean and obese exposed to either 1G or 2G) were individually housed in standard vivarium cages with food and water provided ad libitum. The acute response to 2G included a transient hypophagia accompanied by decreased body mass, followed by recovery of feeding to new steady-states. In the lean rats, body mass-independent food intake had returned to 1G control levels six weeks after the onset of centrifugation, and body mass increased towards that of the 1G rats. In contrast, food intake and body mass of the 2G obese rats plateaued at a level lower than that of the 1G controls. Although percent carcass fat was reduced more in the 2G leans vs. 2G obese rats, the latter lost significantly more grams of fat than did the leans. Our data suggest that with respect to food intake and body mass, the lean rats recover from the initial effects of 2G exposure to a greater degree than do the fatty rats, a difference that likely reflects the functionality of the leptin regulatory system in the leans. 相似文献
13.
R A Pederson R V Campos C B Chan A M Buchan M B Wheeler J C Brown 《Regulatory peptides》1989,24(2):131-142
In this study, gastrin release in the obese Zucker rat was investigated by in vivo and in vitro experiments. Obese rats exhibited normal plasma gastrin levels at 3 weeks (preobese), were moderately hypergastrinemic at 3 months and severely hypergastrinemic at 5 months, compared to lean littermates. Following oral peptone, plasma gastrin levels doubled in both lean and obese rats. Basal and vagally stimulated gastrin release from perfused stomachs was greater in obese compared to lean rats and atropine had no effect on basal gastrin release in either group. Basal somatostatin release from the perfused stomach was found not to differ in both groups of animals. Morphological studies revealed an increase in the number of gastrin-containing G-cells in adult obese rats compared to lean littermates, but not in 3-week-old pups compared to lean littermates, indicating a strong correlation between cell number and plasma gastrin levels. These data indicate that the obese Zucker rat exhibits fasting hypergastrinemia in vivo, a condition which appears after weaning and increases in severity with age. Gastrin hypersecretion persists from the vascularly perfused stomach preparation. The basal hypergastrinemia of the obese Zucker rat is independent of a hyperactive postganglionic cholinergic drive but is associated with and probably causally related to an increase in antral G-cell numbers. 相似文献
14.
Effect of dietary Platycodon grandiflorum on the improvement of insulin resistance in obese Zucker rats 总被引:6,自引:0,他引:6
Kim KS Seo EK Lee YC Lee TK Cho YW Ezaki O Kim CH 《The Journal of nutritional biochemistry》2000,11(9):420-424
The effect of dietary Platycodon grandiflorum on the improvement of insulin resistance and lipid profile was investigated in lean (Fa/-) and obese (fa/fa) Zucker rats, a model for noninsulin dependent diabetes mellitus. Dietary Platycodon grandiflorum feeding for 4 weeks resulted in a significant decrease in the concentration of plasma triglyceride in both lean and obese Zucker rats. Furthermore, dietary Platycodon grandiflorum markedly decreased both plasma cholesterol and fasting plasma insulin levels, and significantly decreased the postprandial glucose level at 30 min during oral glucose tolerance test in obese Zucker rats. Although there was no statistical significance, the crude glucose transporter 4 protein level of obese rats fed Platycodon grandiflorum tended to increase when compared with that of obese control rats. Therefore, the present results suggested that dietary Platycodon grandiflorum may be useful in prevention and improvement of metabolic disorders characterized by hyperinsulinemia states such as noninsulin dependent diabetes mellitus, syndrome X, and coronary artery disease. 相似文献
15.
Sensory nerve inactivation by resiniferatoxin improves insulin sensitivity in male obese Zucker rats
Moesgaard SG Brand CL Sturis J Ahrén B Wilken M Fleckner J Carr RD Svendsen O Hansen AJ Gram DX 《American journal of physiology. Endocrinology and metabolism》2005,288(6):E1137-E1145
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity. 相似文献
16.
Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats. 总被引:9,自引:0,他引:9
Christine Y Christ Desmond Hunt Joe Hancock Rebeca Garcia-Macedo Lawrence J Mandarino John L Ivy 《Journal of applied physiology》2002,92(2):736-744
Exercise training improves skeletal muscle insulin sensitivity in the obese Zucker rat. The purpose of this study was to investigate whether the improvement in insulin action in response to exercise training is associated with enhanced insulin receptor signaling. Obese Zucker rats were trained for 7 wk and studied by using the hindlimb-perfusion technique 24 h, 96 h, or 7 days after their last exercise training bout. Insulin-stimulated glucose uptake (traced with 2-deoxyglucose) was significantly reduced in untrained obese Zucker rats compared with lean controls (2.2 +/- 0.17 vs. 5.4 +/- 0.46 micromol x g(-1) x h(-1)). Glucose uptake was normalized 24 h after the last exercise bout (4.9 +/- 0.41 micromol x g(-1) x h(-1)) and remained significantly elevated above the untrained obese Zucker rats for 7 days. However, exercise training did not increase insulin receptor or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3-kinase) activity associated with IRS-1 or tyrosine phosphorylated immunoprecipitates, or Akt serine phosphorylation. These results are consistent with the hypothesis that, in obese Zucker rats, adaptations occur during training that lead to improved insulin-stimulated muscle glucose uptake without affecting insulin receptor signaling through the PI3-kinase pathway. 相似文献
17.
I. Rafecas M. Esteve J. A. Fernández-López X. Remesar M. Alemany 《Molecular and cellular biochemistry》1993,121(1):45-57
The amino acid composition of the diet ingested by reference and cafeteria diet-fed lean and obese Zucker rats has been analyzed from day 30 to 60 after birth. Their body protein amino acid composition was measured, as well as the urinary and faecal losses incurred during the period studied. The protein actually selected by the rats fed the cafeteria diet had essentially the same amino acid composition as the reference diet. The mean protein amino acid composition of the rat showed only small changes with breed, age or diet.Cafeteria-fed rats had a higher dietary protein digestion/absorption efficiency than reference diet-fed rats. Obese rats wasted a high proportion of dietary amino acids when given the reference diet, but not on the cafeteria diet. In all cases, the amino acids lost as such in the urine were a minimal portion of available amino acids.In addition to breed, the rates of protein accretion are deeply influenced by diet, but even more by the age — or size — of the animals: cafeteria-fed rats grew faster, to higher body protein settings, but later protein accrual decreased considerably; this is probably due to a limitation in the blueprint for growth which restricts net protein deposition when a certain body size is attained. Obese rats, however, kept accuring protein with high rates throughout.Diet composition — and not protein availability or quality-induced deep changes in amino acid metabolism. Since the differences in the absolute levels of dietary protein or carbohydrate energy ingested by rats fed the reference or cafeteria diets were small, it can be assumed that high (lipid) energy elicits the changes observed in amino acid metabolism by the cafeteria diet. The effects induced in the fate of the nitrogen ingested were more related to the fractional protein energy proportion than to its absolute values. Cafeteria-fed rats tended to absorb more amino acids and preserve them more efficiently; these effects were shown even under conditions of genetic obesity.There were deep differences in handling of dietary amino acids by dietary or genetically obese rats. The former manage to extract and accrue larger proportions of their dietary amino acids than the latter. The effects of both models of amino acid management were largely additive, suggesting that the mechanisms underlying the development of obesity did not run in parallel to those affecting the control of amino acid utilization. Obesity may be developed in both cases despite a completely different strategy of amino acid assimilation, accrual and utilization. (Mol Cell Biochem121: 45–58, 1993) 相似文献
18.
J P Blond P Précigou J Bézard 《Archives internationales de physiologie et de biochimie》1988,96(1):41-49
The purpose of this work was to see whether hyperlipaemia observed in genetically obese Zucker rats (fa/fa) was associated with differences in fatty-acid composition of plasma triacylglycerols, plasma phospholipids and of platelet phospholipids, in comparison with the control lean rats (Fa/-). Results showed that plasma triacylglycerols and phospholipids were increased in obese rats. In triacylglycerols, the amount of saturated and monounsaturated fatty acids was highly increased whereas the amount of the n-6 and n-3 polyunsaturated fatty acids was little modified. In plasma phospholipids, saturated and monounsaturated fatty acids were also increased, as were the n-3 fatty acids (except C 18:3 n-3); the n-6 fatty acids were little increased except C 20:3 n-6 which was markedly increased. These results concerning the amounts of fatty acids have their counterpart in their relative proportions of fatty acids. Data thus obtained suggest that conversion of linoleic acid (C 18:2 n-6) into arachidonic acid (C 20:4 n-6) was decreased in obese rats, particularly the delta 5 desaturation step. On the contrary, conversion of linolenic acid (C 18:3 n-3) into higher polyenes seemed increased. Thrombocytosis was not modified in the obese rat, but the volume of the platelets was increased. Platelet phospholipids exhibited the same modifications as plasma phospholipids but with different magnitude. Saturated and monounsaturated fatty acids were little augmented, n-3 fatty acids were more augmented (except C 18:3 n-3 acid which was unchanged); n-6 fatty acids were not modified except C 20:3 n-6 acid which was highly increased.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats 总被引:8,自引:0,他引:8
Luiken JJ Arumugam Y Dyck DJ Bell RC Pelsers MM Turcotte LP Tandon NN Glatz JF Bonen A 《The Journal of biological chemistry》2001,276(44):40567-40573
Giant vesicles were used to study the rates of uptake of long-chain fatty acids by heart, skeletal muscle, and adipose tissue of obese and lean Zucker rats. With obesity there was an increase in vesicular fatty acid uptake of 1.8-fold in heart, muscle and adipose tissue. In some tissues only fatty acid translocase (FAT) mRNA (heart, +37%; adipose, +80%) and fatty acid-binding protein (FABPpm) mRNA (heart, +148%; adipose, +196%) were increased. At the protein level FABPpm expression was not changed in any tissues except muscle (+14%), and FAT/CD36 protein content was altered slightly in adipose tissue (+26%). In marked contrast, the plasma membrane FAT/CD36 protein was increased in heart (+60%), muscle (+80%), and adipose tissue (+50%). The plasma membrane FABPpm was altered only in heart (+50%) and adipose tissues (+70%). Thus, in obesity, alterations in fatty acid transport in metabolically important tissues are not associated with changes in fatty acid transporter mRNAs or altered fatty acid transport protein expression but with their increased abundance at the plasma membrane. We speculate that in obesity fatty acid transporters are relocated from an intracellular pool to the plasma membrane in heart, muscle, and adipose tissues. 相似文献
20.
Diabetes mellitus is a major cause of neuropathy, leading to adverse effects including autonomic gastrointestinal dysfunction. Oxidative stress contributes to the etiology of diabetic neuropathy. The aim was to examine whether treatment with the antioxidant, alpha-lipoic acid (LA), could prevent or correct diabetic functional defects in the gastric fundus non-adrenergic, non-cholinergic (NANC) nerves, which use nitric oxide as their major neurotransmitter. LA (100 mg/kg/d) was given in a prevention study for 8 weeks following streptozotocin-diabetes induction, and in an intervention study for 4 weeks after 4 weeks of untreated diabetes. Fundus strips were studied in vitro after precontraction with 5-hydroxytryptamine in the presence of guanethidine and atropine to isolate NANC relaxation to electrical field stimulation. After 4 and 8 weeks of diabetes, there were 26% and 48% deficits in maximum relaxation, respectively. Prevention LA treatment gave 83% protection; intervention LA prevented the deterioration between 4 and 8 weeks of diabetes and corrected the initial 4 week deficit by 56%. Diabetes also resulted in a failure to maintain relaxation for prolonged stimulation, which was prevented by LA. Thus, LA prevented and reversed the development of impaired gastric fundus NANC responses in diabetic rats, which has potential therapeutic implications for gastrointestinal autonomic neuropathy. 相似文献