首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined effects of 17beta-estradiol (E(2)) on human vascular smooth muscle cell (VSMC) proliferation under normal (5 mmol/l) and high (25 mmol/l) glucose concentrations. Platelet-derived growth factor (PDGF) BB (20 ng/ml)-induced increases in DNA synthesis and proliferation were greater in high than normal glucose concentrations; the difference in DNA synthesis was abolished by a protein kinase C (PKC)-beta inhibitor, LY-379196 (30 nmol/l). Western blotting showed that PKC-beta(1) protein increased in cells exposed to high glucose, whereas PKC-alpha protein and total PKC activity remained unchanged, compared with normal glucose cultures. In normal glucose, E(2) (1-100 nmol/l) inhibited PDGF-induced DNA synthesis by 18-37% and cell proliferation by 16-22% in a concentration-dependent manner. The effects of E(2) were blocked by the estrogen receptor (ER) antagonist ICI-182780, indicating ER dependence. In high glucose, the inhibitory effect of E(2) on VSMC proliferation was abolished but was restored in the presence of the PKC-beta inhibitor LY-379196. Thus high glucose enhances human VSMC proliferation and attenuates the antiproliferative effect of E(2) in VSMC via activation of PKC-beta.  相似文献   

2.
Hair follicle growth cycle proceeds through a series of stages in which strict control of cell proliferation, differentiation, and cell death occurs. Transgenic mice expressing human papillomavirus type 16 E6/E7 papillomavirus oncogenes in the outer root sheath (ORS) display a fur phenotype characterized by lower hair density and the ability to regenerate hair much faster than wild-type mice. Regenerating hair follicles of transgenic mice show a longer growth phase (anagen), and although bulb regression (catagen) occurs, rest at telogen was not observed. No abnormalities were detected during the first cycle of hair follicle growth, but by the second cycle, initiation of catagen was delayed, and rest at telogen was again not attained, even in the presence of estradiol, a telogen resting signal. In conclusion, expression of E6/E7 in the ORS delays entrance to catagen and makes cells of the ORS insensitive to telogen resting signals bearing to a continuous hair follicle cycling in transgenic mice.  相似文献   

3.
Responses of primary hippocampal and cortical neurons derived from male and female rats to cellular stressors were studied. It is demonstrated that 17β-estradiol (E2), a potent neuroprotectant, protected the female neurons but had no effects on the male neurons from CoCl2- and glutamate-induced toxicity. Agonists of the estrogen receptor (ER) subtypes ERα and ERβ, DPN and PPT, respectively, had similar effects to E2. By contrast, effects of E2 were abolished by the ER antagonist ICI-182780, further corroborating the neuroprotective role of ERs. In male neurons, CoCl2 predominately activated the apoptosis-inducing factor (AIF)-dependent pathway and AIF translocation from the cytosol to the nucleus. In comparison, CoCl2 activated the caspase pathway and cytochrome c release in female neurons. The inhibitors of these pathways, namely DiQ for AIF and zVAD for caspase, specifically rescued CoCl2-induced cell death in male and female neurons, respectively. When zVAD and ICI-182780, and E2 were applied in combination, it was demonstrated E2 acted on the caspase pathway leading to female-specific neuroprotection. Furthermore, the PI3 kinase (PI3K) inhibitor blocked the rescue effects of DiQ and zVAD on the male and female neurons, respectively, suggesting that PI3K is a common upstream regulator for both pathways. The present study suggested that both sex-specific and nonspecific mechanisms played a role in neuronal responses to stressors and protective reagents.  相似文献   

4.
Roy S  De J  Kundu S  Biswas A  Pramanik M  Ray AK 《Life sciences》2007,80(5):446-453
In recent years, various vertebrate peptide and steroid hormones have been identified in invertebrates, estradiol-17beta (E2) being a major one. We have specifically shown NADP-malate dehydrogenase (NADP-MDH) activity in fifth instar larval fatbody of female silkworm, Bombyx mori, as an E2 responsive parameter. Interestingly enough, estradiol-induced increase in the enzyme activity could be counteracted by simultaneous application of specific E2-inhibitor, ICI-182780. Further, a nice correlation was obtained among the E2 titre, specific *E2 binding and expression of NADP-MDH activity in fatbody during different days of normal fifth instar larval development. Though the nature of the binding sites is quite similar to known steroid receptors of vertebrate, the reported absence of estrogen receptor gene in some insects poses a question. A recent finding regarding the presence of an estrogen-related receptor ortholog in fruit fly may provide some answers. The specific effects elicited by estradiol in the female fatbody of this insect support its possibility of having an important metabolic function. This role played by E2, whether hormonal or not, is yet to be identified.  相似文献   

5.
6.
7.
Hair follicle development serves as an excellent model to study control of organ morphogenesis. Three specific isoforms of TGF-beta exist which exhibit a distinct pattern of expression during hair follicle morphogenesis. To clarify the still elusive role of these factors in hair follicle development, we have used a combined genetic and functional approach: analysis of hair follicle development in mice with disruptions of the TGF-beta1, 2, and 3 genes was coupled with a direct functional test of the effect of added purified factors on fetal hair follicle development in skin organ cultures. TGF-beta2 null mice exhibited a profound delay of hair follicle morphogenesis, with a 50% reduced number of hair follicles. In contrast to hair follicle development, growth and differentiation of interfollicular keratinocytes proceeded unimpaired. Unlike TGF-beta2-/- mice, mice with a disruption of the TGF-beta1 gene showed slightly advanced hair follicle formation, while lack of the TGF-beta3 gene did not have any effects. Treatment of wild-type, embryonic skin explants (E14.5 or E15.5) with TGF-beta2 protein in either soluble form or slow release beads induced hair follicle development and epidermal hyperplasia, while similar TGF-beta1 treatment exerted suppressive effects. Thus, the TGF-beta2 isoform plays a specific role, not shared by the other TGF-beta isoforms, as an inducer of hair follicle morphogenesis and is both required and sufficient to promote this process.  相似文献   

8.
9.
Estradiol-17beta (E2) at the dose of 1 microg/g caused an increase in cell area, lumen area and the total (cell + lumen) area of posterior silk gland (PSG) in Bombyx mori indicating that exogenously applied estradiol-17beta has a regulatory influence on silk gland activity. A dose-dependent variation in trehalase activity of PSG was found on the 5th day after topical administration of estradiol on 1st and 2nd day of the fifth larval instar. Of all the doses of E2 used, 1 microg/g dose had maximum stimulatory effect on trehalase activity. Co-administration of each of a specific receptor antagonist for estradiol, the ICI-182780 and a protein biosynthetic blocker, cycloheximide with E2 suppressed the E2-induced increase in silk gland activity. The results suggest some specific metabolic action of E2 on silk gland and offer a promising way for future investigations regarding the physiological significance of vertebrate steroids in insects.  相似文献   

10.
11.
12.
MicroRNAs (miRNAs) regulate the expression of many mammalian genes and play key roles in embryonic hair follicle development; however, little is known of their functions in postnatal hair growth. We compared the effects of deleting the essential miRNA biogenesis enzymes Drosha and Dicer in mouse skin epithelial cells at successive postnatal time points. Deletion of either Drosha or Dicer during an established growth phase (anagen) caused failure of hair follicles to enter a normal catagen regression phase, eventual follicular degradation and stem cell loss. Deletion of Drosha or Dicer in resting phase follicles did not affect follicular structure or epithelial stem cell maintenance, and stimulation of anagen by hair plucking caused follicular proliferation and formation of a primitive transient amplifying matrix population. However, mutant matrix cells exhibited apoptosis and DNA damage and hair follicles rapidly degraded. Hair follicle defects at early time points post-deletion occurred in the absence of inflammation, but a dermal inflammatory response and hyperproliferation of interfollicular epidermis accompanied subsequent hair follicle degradation. These data reveal multiple functions for Drosha and Dicer in suppressing DNA damage in rapidly proliferating follicular matrix cells, facilitating catagen and maintaining follicular structures and their associated stem cells. Although Drosha and Dicer each possess independent non-miRNA-related functions, the similarity in phenotypes of the inducible epidermal Drosha and Dicer mutants indicates that these defects result primarily from failure of miRNA processing. Consistent with this, Dicer deletion resulted in the upregulation of multiple direct targets of the highly expressed epithelial miRNA miR-205.  相似文献   

13.
Proliferative activity and differentiation rate of hair follicle cells determine the shape of the hair and parameters of hair growth. The hair growth rate and changes of geometric parameters of the hair shaft during its elongation (in time) are analyzed to reconstruct the proliferation dynamics of follicle matrix cells. The reconstruction demonstrated that the number of cells of hair follicle matrix increases in a typical manner, including the phase of exponential growth and the stationary phase.  相似文献   

14.
Transforming growth factor-β-activated kinase 1 (TAK1) is a member of the NF-κB pathway and regulates inflammatory responses. We previously showed that TAK1 also regulates keratinocyte growth, differentiation, and apoptosis. However, it is unknown whether TAK1 has any role in epithelial–mesenchymal interactions. To examine this possibility, we studied the role of TAK1 in mouse hair follicle development and cycling as an instructive model system. By comparing keratinocyte-specific TAK1-deficient mice (Map3k7 fl/flK5-Cre) with control mice, we found that the number of hair germs (hair follicles precursors) in Map3k7 fl/flK5-Cre mice was significantly reduced at E15.5, and that subsequent hair follicle morphogenesis was retarded. Next, we analyzed the role of TAK1 in the cyclic remodeling in follicles by analyzing hair cycle progression in mice with a tamoxifen-inducible keratinocyte-specific TAK1 deficiency (Map3k7 fl/flK14-Cre-ERT2). After active hair growth (anagen) was induced by depilation, TAK1 was deleted by topical tamoxifen application. This resulted in significantly retarded anagen development in TAK1-deficient mice. Deletion of TAK1 in hair follicles that were already in anagen induced premature, apoptosis-driven hair follicle regression, along with hair follicle damage. These studies provide the first evidence that the inflammatory mediator TAK1 regulates hair follicle induction and morphogenesis, and is required for anagen induction and anagen maintenance.  相似文献   

15.
Free radical-generated F(2alpha)-isoprostanes are a group of compounds with vasoconstrictor properties. To investigate whether estradiol exerts antioxidant actions modifying F(2alpha)-isoprostane production, cultured human umbilical vein endothelial cells were exposed to estradiol and other compounds and F(2alpha)-isoprostanes were measured in culture medium. Exposure to 1 and 10 nM estradiol for 24 h reduced F(2alpha)-isoprostane production by 36 and 49%, respectively (P < 0.001 vs. control). Exposure to antiestrogens alone (ICI-182780 or EM-652) slightly reduced F(2alpha)-isoprostanes (P < 0.05 vs. control), but much less than exposure to estradiol (P < 0.05). ICI-182780 reversed the estradiol-induced reduction of F(2alpha)-isoprostane concentration (P < 0.05). Along with time-course analysis, these results suggest that estradiol effects were mediated through estrogen receptor-dependent and -independent mechanisms. Progestogens alone (progesterone or medroxyprogesterone acetate) did not modify F(2alpha)-isoprostane production at any of the tested concentrations (1, 10, and 100 nM). Progesterone completely reversed estradiol-induced reduction of F(2alpha)-isoprostane production (P < 0.05 vs. control and estradiol), but medroxyprogesterone acetate did not (P < 0.05 vs. control).  相似文献   

16.
Combination of dietary phytoestrogens with diverse molecular mechanisms may enhance their anticancer efficacy at physiological concentrations, as evidenced in epidemiological studies. A select combination of three dietary phytoestrogens containing 8.33 μM each of genistein (G), quercetin (Q) and biochanin A (B) was found to be more potent in inhibiting the growth of androgen-responsive prostate cancer cells (LNCaP) as well as DU-145 and PC-3 prostate cancer cells in vitro than either 25 μM of G, B or Q or 12.5+12.5 μM of G+Q, Q+B or G+B. Subsequent mechanistic studies in PC-3 cells indicated that the action of phytoestrogens was mediated both through estrogen receptor (ER)-dependent and ER-independent pathways as potent estrogen antagonist ICI-182780 (ICI, 5 μM) could not completely mask the synergistic anticancer effects, which were sustained appreciably in presence of ICI. G+Q+B combination was significantly more effective than individual compounds or their double combinations in increasing ER-β, bax (mRNA expression); phospho-JNK, bax (protein levels); and in decreasing bcl-2, cyclin E, c-myc (mRNA expression); phospho-AKT, phospho-ERK, bcl-2, proliferating cell nuclear antigen (protein levels) in PC-3 cells. Phytoestrogens also synergistically stimulated caspase-3 activity. Our findings suggest that selectively combining anticancer phytoestrogens could significantly increase the efficacy of individual components resulting in improved efficacy at physiologically achievable concentrations. The combination mechanism of multiple anticancer phytochemicals may be indicative of the potential of some vegetarian diet components to elicit chemopreventive effects against prostate cancer at their physiologically achievable concentrations, in vivo.  相似文献   

17.
Our experiments were designed to determine the acute effects of 17beta-estradiol on femoral veins from intact and ovariectomized female pigs. Rings of femoral veins with or without endothelium were suspended in organ chambers for measurement of isometric force. Concentration-response curves to 17beta-estradiol (10(-9) to 10(-5) M) were obtained in veins contracted with prostaglandin F(2alpha) in the absence and presence of inhibitors of either estrogen receptors (ICI-182780; 10(-5) M), nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 10(-4) M], soluble guanylate cyclase (1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; 10(-5) M), or potassium channels (tetraethylammonium; 10(-2) M). Estrogen receptors were identified with the use of Western blotting and immunostaining in veins of both groups. 17beta-Estradiol caused acute endothelium-dependent relaxations in both groups. Relaxations to 17beta-estradiol were inhibited by l-NMMA and 1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one but not ICI-182780. Tetraethylammonium inhibited relaxations only in veins with endothelium from intact females. Results indicate that 17beta-estradiol causes acute endothelium-dependent relaxations in femoral veins. The relative contribution of nitric oxide and K(+) channels as mechanisms involved in relaxations to 17beta-estradiol in femoral veins is modulated by ovarian status.  相似文献   

18.
Catecholestrogens are estrogen metabolites formed by hydroxylation of 17beta-estradiol and estrone at either the C-2 or C-4 position, rivaling the parent estrogens in concentration. The objective of the present work was to assess if their catechol group could make them induce proliferation of human breast cancer cells via alpha(2)-adrenoceptors. In competition studies in human breast cancer MCF-7 cells, high concentrations of 2-hydroxy-estradiol (2-OH-E(2)), 2-hydroxy-estrone (2-OH-E(1)) and 4-hydroxy-estrone (4-OH-E(1)) competed for [(3)H]-rauwolscine binding, whereas 4-hydroxy-estradiol (4-OH-E(2)) did not. The contribution of alpha(2)-adrenoceptors and estrogen receptors (ERs) in proliferation enhancement was analyzed with specific antagonists. The specific alpha(2)-adrenergic antagonist yohimbine partially reversed the effect of catecholestrogens except 4-OH-E(2). The selective ER downregulator ICI-182780 or fulvestrant partially or totally reversed the effect of all hydroxylated catecholestrogens. When analyzing the effect of the combination of both antagonists in MCF-7, the contribution of the alpha(2)-adrenoceptors and ERs for 2-OH-E(2), 2-OH-E(1) and 4-OH-E(1) was mixed, whereas for 4-OH-E(2), the only receptor implied was an ER. In MDA-MB-231 cells (ER-alpha negative) the proliferation stimulation by these three catecholestrogens and reversal by the adrenergic antagonist was also observed. It can be concluded that alpha(2)-adrenoceptors contribute at least in part to the mitogenic effect of 2-OH-E(2), 2-OH-E(1) and 4-OH-E(1).  相似文献   

19.
20.
Denger S  Reid G  Gannon F 《Steroids》2008,73(7):765-774
Estrogens play a key role in bone structural integrity, which is maintained by the opposing activity of bone forming osteoblasts and bone resorbing osteoclasts. The cellular effects of estrogens are mediated by estrogen receptors, however, the detailed molecular mechanism of ER regulation in osteoclasts has not yet been elucidated. We provide here a detailed analysis of the expression profile and functionality of ER during osteoclast differentiation. We employed a human primary osteoclast cell culture model to evaluate the regulation of estrogen receptor (ER) variant expression. We characterized the expression profile of estrogen receptors and studied the regulation of the predominant estrogen receptor-alpha (ER-alpha) during differentiation into osteoclasts. In addition to the full-length ER-alpha, a shorter ER-alpha mRNA variant is expressed and both ER-alpha variants are regulated during osteoclastogenesis. Furthermore, we show that the pS2 gene is an estrogen-regulated gene in osteoclasts. Analysis of the activity of the pS2 gene throughout differentiation, using chromatin immunoprecipitation (ChIP), revealed the functionality of ER-alpha during differentiation and shows that the occupancy of ER-alpha and activated polymerase II on the pS2 promoter decrease with time and can be blocked by the ER antagonist ICI 182780. These results help to dissect the molecular events relevant to estrogen signaling and provide a better understanding of the role of ER-alpha regulation during bone resorption mediated by osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号