首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite a presumptive role for type I (AT1) cells in alveolar epithelial transport, specific Na transporters have not previously been localized to these cells. To evaluate expression of Na transporters in AT1 cells, double labeling immunofluorescence microscopy was utilized in whole lung and in cytocentrifuged preparations of partially purified alveolar epithelial cells (AEC). Expression of Na pump subunit isoforms and the alpha-subunit of the rat (r) epithelial Na channel (alpha-ENaC) was evaluated in isolated AT1 cells identified by their immunoreactivity with AT1 cell-specific antibody markers (VIIIB2 and/or anti-aquaporin-5) and lack of reactivity with antibodies specific for AT2 cells (anti-surfactant protein A) or leukocytes (anti-leukocyte common antigen). Expression of the Na pump alpha(1)-subunit in AEC was assessed in situ. Na pump subunit isoform and alpha-rENaC expression was also evaluated by RT-PCR in highly purified (approximately 95%) AT1 cell preparations. Labeling of isolated AT1 cells with anti-alpha(1) and anti-beta(1) Na pump subunit and anti-alpha-rENaC antibodies was detected, while reactivity with anti-alpha(2) Na pump subunit antibody was absent. AT1 cells in situ were reactive with anti-alpha(1) Na pump subunit antibody. Na pump alpha(1)- and beta(1)- (but not alpha(2)-) subunits and alpha-rENaC were detected in highly purified AT1 cells by RT-PCR. These data demonstrate that AT1 cells express Na pump and Na channel proteins, supporting a role for AT1 cells in active transalveolar epithelial Na transport.  相似文献   

2.
3.
Extracellular Ca(2+)/polyvalent cation-sensing receptor (CaSR) is capable of monitoring changes in extracellular polyvalent cation concentrations. In the present study, we investigated whether CaSR agonists reinforce the decrease of intracellular free Mg(2+) concentration ([Mg(2+)](i)) induced by extracellular Mg(2+) plus Na(+) removal. Interestingly, exposure of NRK-52E renal epithelial cells to increasing extracellular Mg(2+) concentrations from 0.8 to 15 mM for 1-2 days resulted in a twofold increase in the levels of CaSR mRNA and protein. By fluorophotometer (with mag-fura 2 fluorescent dye) and atomic absorption spectrophotometer, we confirmed that activation of CaSR by neomycin (0.5 mM) or gadolinium (1 mM) reinforced the decrease of [Mg(2+)](i) induced by Mg(2+) removal in the cells cultured in 10 mM Mg(2+)-containing medium. The neomycin-induced [Mg(2+)](i) decrease was inhibited by nicardipine (50 microM), but not by verapamil (50 microM) or amiloride (0.1 mM). These results indicate that CaSR monitors extracellular Mg(2+) concentration, and probably cause activation of Na(+)-independent Mg(2+)-transport system.  相似文献   

4.
The uptake of glucose and its non-metabolizing analogues by Haloferax volcanii, one of the glucose-utilizing Halobacteria, was examined using intact cells and envelope vesicles. Results obtained were: (1) The transport system is inducible. (2) The uptake requires the gradient of Na(+)-electrochemical potential. (3) Inhibitors for mammalian glucose transport also have an effect on this system, implying that the transporters resemble each other. (4) It is suggested that the mobility of the transporter is regulated by the membrane energization.  相似文献   

5.
Sodium-dependent transporters regulate extracellular glutamate in the CNS. Recent studies suggest that the activity of several different neurotransmitter transporters can be rapidly regulated by a variety of mechanisms. In the present study, we report that pre-incubation of primary 'astrocyte-poor' neuronal cultures with glutamate (100 microM) for 30 min nearly doubled the V(max) for Na(+)-dependent accumulation of L-[(3)H]-glutamate, but had no effect on Na(+)-dependent [(3)H]-glycine transport. Pre-incubation with glutamate also increased the net uptake of non-radioactive glutamate, providing evidence that the increase in accumulation of L-[(3)H]-glutamate was not related to an increase in intracellular glutamate and a subsequent increase in exchange of intracellular non-radioactive glutamate for extracellular radioactive glutamate. The glutamate receptor agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate, quisqualate, and (1 S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid did not mimic the effect of pre-incubation with glutamate and the glutamate-induced increase was not blocked by receptor antagonists. However, compounds known to interact with the transporters, including L-aspartate, D-aspartate, L-(-)-threo-3-hydroxyaspartate (L-THA) and L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC), caused variable increases in transport activity and attenuated the increase induced by glutamate, suggesting that the increase is related to the interaction of glutamate with the transporters. Several studies were attempted to define the mechanism of this regulation. We found no evidence for increases in transporter synthesis or cell surface expression. Inhibitors of signaling molecules known to regulate other neurotransmitter transporters had no effect on this stimulation. Using a variety of cultures, evidence is provided to suggest that this substrate-induced up-regulation of glutamate transport is specific for the GLT-1 and GLAST subtypes and does not influence transport mediated by EAAC1. These studies suggest that the interaction of glutamate with some of the subtypes of glutamate transporters causes an increase in transport activity. Conceivably, this phenomenon provides an endogenous mechanism to increase the clearance of glutamate during periods of prolonged elevations in extracellular glutamate.  相似文献   

6.
Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.  相似文献   

7.
The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary.  相似文献   

8.
Regulation of the epithelial Na(+) channel by extracellular acidification   总被引:2,自引:0,他引:2  
The effect of extracellular acidification wastested on the native epithelial Na+ channel (ENaC) in A6epithelia and on the cloned ENaC expressed in Xenopusoocytes. Channel activity was determined utilizing blocker-inducedfluctuation analysis in A6 epithelia and dual electrode voltage clampin oocytes. In A6 cells, a decrease of extracellular pH(pHo) from 7.4 to 6.4 caused a slow stimulation of theamiloride-sensitive short-circuit current (INa)by 68.4 ± 11% (n = 9) at 60 min. This increaseof INa was attributed to an increase of openchannel and total channel (NT) densities. Similar changes were observed with pHo 5.4. The effects ofpHo were blocked by buffering intracellularCa2+ with 5 µM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Inoocytes, pHo 6.4 elicited a small transient increase of theslope conductance of the cloned ENaC (11.4 ± 2.2% at 2 min)followed by a decrease to 83.7 ± 11.7% of control at 60 min (n = 6). Thus small decreases of pHostimulate the native ENaC by increasing NT butdo not appreciably affect ENaC expressed in Xenopus oocytes.These effects are distinct from those observed with decreasingintracellular pH with permeant buffers that are known to inhibit ENaC.

  相似文献   

9.
Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na(+)-K(+)-ATPase activity, as assessed by (86)Rb(+) uptake. By 30 min and after 60 min, Na(+)-K(+)-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na(+) entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na(+)-K(+)-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na(+) entry into cells, demonstrated increased Na(+)-K(+)-ATPase activity. The changes in Na(+)-K(+)-ATPase activity were paralleled by increased Na(+)-K(+)-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na(+)-K(+)-ATPase activity, most likely by increasing intracellular Na(+) and by recruitment of Na(+)-K(+)-ATPase subunits from intracellular pools to the basolateral membrane.  相似文献   

10.
11.
Na(+)-dependent amino isobutyric acid transport by two neuroblastoma cell lines with and without amplification of the oncogene N-myc is studied. Surprisingly, the contribution of system A is greater in the cell line showing no N-myc amplification. Preliminary data support a role for essential tyrosine and cysteine residues in the active center of the carriers, mainly in system A.  相似文献   

12.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

13.
Böhmer C  Wehner F 《FEBS letters》2001,494(1-2):125-128
The epithelial Na(+) channel (ENaC) is composed of the subunits alpha, beta, and gamma [Canessa et al., Nature 367 (1994) 463-467] and typically exhibits a high affinity to amiloride [Canessa et al., Nature 361 (1993) 467-470]. When expressed in Xenopus oocytes, conflicting results were reported concerning the osmo-sensitivity of the channel [Ji et al., Am. J. Physiol. 275 (1998) C1182-C1190; Hawayda and Subramanyam, J. Gen. Physiol. 112 (1998) 97-111; Rossier, J. Gen. Physiol. 112 (1998) 95-96]. Rat hepatocytes were the first system in which amiloride-sensitive sodium currents in response to hypertonic stress were reported [Wehner et al., J. Gen. Physiol. 105 (1995) 507-535; Wehner et al., Physiologist 40 (1997) A-4]. Moreover, all three ENaC subunits are expressed in these cells [B?hmer et al., Cell. Physiol. Biochem. 10 (2000) 187-194]. Here, we injected specific antisense oligonucleotides directed against alpha-rENaC into single rat hepatocytes in confluent primary culture and found an inhibition of hypertonicity-induced Na(+) currents by 70%. This is the first direct evidence for a role of the ENaC in cell volume regulation.  相似文献   

14.
Neutrophil elastase is a serine protease that is abundant in the airways of individuals with cystic fibrosis (CF), a genetic disease manifested by excessive airway Na(+) absorption and consequent depletion of the airway surface liquid layer. Although endogenous epithelium-derived serine proteases regulate epithelial Na(+) transport, the effects of neutrophil elastase on epithelial Na(+) transport and epithelial Na(+) channel (ENaC) activity are unknown. Low micromolar concentrations of human neutrophil elastase (hNE) applied to the apical surface of a human bronchial cell line (16HBE14o-/beta gamma) increased Na(+) transport about twofold. Similar effects were observed with trypsin, also a serine protease. Proteolytic inhibitors of hNE or trypsin selectively abolished the enzyme-induced increase of epithelial Na(+) transport. At the level of the single channel, submicromolar concentrations of hNE increased activity of near-silent ENaC approximately 108-fold in patches from NIH-3T3 cells expressing rat alpha-, beta-, and gamma-ENaC subunits. However, no enzyme effects were observed on basally active ENaCs. Trypsin exposure following hNE revealed no additional increase in amiloride-sensitive short-circuit current or in ENaC activity, suggesting these enzymes share a common mode of action for increasing Na(+) transport, likely through proteolytic activation of ENaC. The hNE-induced increase of near-silent ENaC activity in CF airways could contribute to Na(+) hyperabsorption, reduced airway surface liquid height, and dehydrated mucus culminating in inefficient mucociliary clearance.  相似文献   

15.
Na(+)-dependent, active and Na(+)-independent facilitated nucleoside transport were characterized in mouse spleen cells using rapid kinetic techniques and formycin B, a metabolically inert analog of inosine, as substrate. The Michaelis-Menten constants for formycin B transport by the two transporters were about 30 and 400 microM, respectively. The first-order rate constant for Na(+)-dependent transport was about 4-times higher than that for facilitated formycin B transport. The Na(+)-dependent carrier is specific for uridine and purine nucleosides and accumulates formycin B concentratively in an unmodified form. Concentrative accumulation was inhibited by ATP depletion and gramicidin and ouabain treatment of the cells. Our data indicate a single Na(+)-binding site on the Na(+)-dependent nucleoside carrier and a Michaelis-Menten constant for Na+ of about 10 mM. This transporter was not significantly inhibited by dipyridamole and nitrobenzylthioinosine, inhibitors of the facilitated transporter. The Na(+)-independent, facilitated nucleoside transporter of spleen cells exhibits properties comparable to those of the carriers present in mammalian cells in general. The B lymphocytes remaining after depletion of spleen cell populations of T lymphocytes by incubation with a combination of T-cell specific monoclonal antibodies plus complement exhibited about the same activities of active and facilitated nucleoside transport as the original suspension.  相似文献   

16.
Na(+)-K(+)-ATPase pumps (Na(+) pumps) in the alveolar epithelium create a transepithelial Na(+) gradient crucial to keeping fluid from the pulmonary air space. We hypothesized that alveolar epithelial stretch stimulates Na(+) pump trafficking to the basolateral membrane (BLM) and, thereby, increases overall Na(+) pump activity. Alveolar type II cells were isolated from Sprague-Dawley rats and seeded onto elastic membranes coated with fibronectin or 5-day-conditioned extracellular matrix. After 2 days in culture, cells were uniformly stretched for 1 h in a custom-made device. Na(+) pump activity was subsequently assessed by ouabain-inhibitable uptake of (86)Rb(+), a K(+) tracer, and BLM Na(+) pump abundance was measured. In support of our hypothesis, cells increased Na(+) pump activity in a "dose-dependent" manner when stretched to 12, 25, or 37% change in surface area (DeltaSA), and cells stretched to 25% DeltaSA more than doubled Na(+) pump abundance in the BLM. Cells on 5-day matrix tolerated higher strain than cells on fibronectin before the onset of Na(+) pump upregulation. Treatment with Gd(3+), a stretch-activated channel blocker, amiloride, a Na(+) channel blocker, or both reduced but did not abolish stretch-induced effects. Sustained tonic stretch, unlike cyclic stretch, elicited no significant Na(+) pump response.  相似文献   

17.
K(+)- and Na(+)-selective double-barrelled microelectrodes were used for intracellular and luminal measurements in salivary ducts of Periplaneta americana. The salivary ducts were stimulated with dopamine (10(-6) mol l(-1)). Dopamine decreased intracellular [K(+)] from 112+/-17 mmol l(-1) to 40+/-13 mmol l(-1) (n=6) and increased intracellular [Na(+)] from 22+/-19 mmol l(-1) to 92+/-4 mmol l(-1) (n=6). Luminal [K(+)] was 15+/-3 mmol l(-1) in the unstimulated salivary ducts and increased to 26+/-11 mmol l(-1) upon stimulation with dopamine (n=10). Luminal [Na(+)] was insignificantly increased from 105+/-25 mmol l(-1) to 116+/-22 mmol l(-1) (n=12) by stimulation with dopamine. The potential difference across the basolateral membrane (PD(b)) was depolarized from -65+/-6 mV to -31+/-13 mV (n=12) and the transepithelial potential difference (PD(t)) was hyperpolarized from -13+/-6 mV to -22+/-7 mV (n=22, lumen negative) upon stimulation with dopamine. The re-establishment of prestimulus values of intracellular [K(+)] and [Na(+)] and PD(b) was inhibited by basolateral addition of ouabain (10(-4) mol l(-1)). Furosemide (10(-4) mol l(-1)) in the bath inhibited the dopamine-induced increase in intracellular [Na(+)], the decrease in intracellular [K(+)] and the depolarization of PD(b). We propose a model for dopamine-stimulated ion transport in the salivary ducts involving basolateral Na(+)-K(+)-2Cl(-) cotransport and active extrusion of K(+) via the apical membrane.  相似文献   

18.
Protons are the most common coupling ions in bacterial energy conversions. However, while many organisms, such as the alkaliphilic Bacilli, employ H(+)-bioenergetics for electron transport phosphorylation, they use Na+ as the coupling ion for transport and flagellar movement. The Na+ gradient required for these bioenergetic functions is established by the secondary Na+/H+ antiporter. In contrast, Vibrio alginolyticus and methanogenic bacteria have primary pumps for both H+ and Na+. They use the proton gradient for ATP synthesis while other, less energy-consuming membrane reactions are powered by the Na+ gradient. In a third mode, some anaerobic bacteria possess decarboxylases acting as primary Na+ pumps. For instance, in Klebsiella pneumoniae, the Na+ gradient established by oxaloacetate decarboxylase is used for the uptake of the growth substrate citrate, and Propionigenium modestum consumes the energy of the Na+ gradient formed by methylmalonyl-CoA decarboxylase directly for ATP synthesis.  相似文献   

19.
The carrier-mediated, electroneutral exchange of Na(+) for H(+) across the plasma membrane does not directly consume metabolic energy. Nevertheless, acute depletion of cellular ATP markedly decreases transport. We analyzed the possible involvement of polyphosphoinositides in the metabolic regulation of NHE1, the ubiquitous isoform of the Na(+)/H(+) exchanger. Depletion of ATP was accompanied by a marked reduction of plasmalemmal phosphatidylinositol 4,5-bisphosphate (PIP(2)) content. Moreover, sequestration or hydrolysis of plasmalemmal PIP(2), in the absence of ATP depletion, was associated with profound inhibition of NHE1 activity. Examination of the primary structure of the COOH-terminal domain of NHE1 revealed two potential PIP(2)-binding motifs. Fusion proteins encoding these motifs bound PIP(2) in vitro. When transfected into antiport-deficient cells, mutant forms of NHE1 lacking the putative PIP(2)-binding domains had greatly reduced transport capability, implying that association with PIP(2) is required for optimal activity. These findings suggest that NHE1 activity is modulated by phosphoinositides and that the inhibitory effect of ATP depletion may be attributable, at least in part, to the accompanying net dephosphorylation of PIP(2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号