首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine-1-phosphate (S1P) induces a transient bradycardia in mammalian hearts through activation of an inwardly rectifying K(+) current (I(K(ACh))) in the atrium that shortens action potential duration (APD) in the atrium. We have investigated probable mechanisms and receptor-subtype specificity for S1P-induced negative inotropy in isolated adult mouse ventricular myocytes. Activation of S1P receptors by S1P (100 nM) reduced cell shortening by approximately 25% (vs. untreated controls) in field-stimulated myocytes. S1P(1) was shown to be involved by using the S1P(1)-selective agonist SEW2871 on myocytes isolated from S1P(3)-null mice. However, in these myocytes, S1P(3) can modulate a somewhat similar negative inotropy, as judged by the effects of the S1P(1) antagonist VPC23019. Since S1P(1) activates G(i) exclusively, whereas S1P(3) activates both G(i) and G(q), these results strongly implicate the involvement of mainly G(i). Additional experiments using the I(K(ACh)) blocker tertiapin demonstrated that I(K(ACh)) can contribute to the negative inotropy following S1P activation of S1P(1) (perhaps through G(ibetagamma) subunits). Mathematical modeling of the effects of S1P on APD in the mouse ventricle suggests that shortening of APD (e.g., as induced by I(K(ACh))) can reduce L-type calcium current and thus can decrease the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient. Both effects can contribute to the observed negative inotropic effects of S1P. In summary, these findings suggest that the negative inotropy observed in S1P-treated adult mouse ventricular myocytes may consist of two distinctive components: 1) one pathway that acts via G(i) to reduce L-type calcium channel current, blunt calcium-induced calcium release, and decrease [Ca(2+)](i); and 2) a second pathway that acts via G(i) to activate I(K(ACh)) and reduce APD. This decrease in APD is expected to decrease Ca(2+) influx and reduce [Ca(2+)](i) and myocyte contractility.  相似文献   

2.
The effect of nitric oxide (NO) on calcium current (I(Ca)) and intracellular calcium concentration ([Ca(2+)](i)) in primarily cultured dorsal root ganglion (DRG) neurons was investigated from neonatal rats. I(Ca) and [Ca(2+)](i) were simultaneously recorded using perforated-patch technique in combination with fluorescence measurement from single DRG neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), inhibited I(Ca) in small-diameter neurons without significant change in voltage-dependence of activation and activation time constants. SNP and SNAP also reduced the transient [Ca(2+)](i) peak accompanied by I(Ca). Inhibition by NO was reproducible, but gradually desensitized. In some DRG neurons, SNP and SNAP increased basal [Ca(2+)](i) in concentration of 10 microM with little effect on NO-induced inhibition of I(Ca). 8-Br-cGMP, a permeable cGMP analog, mimicked the effects of SNP and SNAP. These results suggest that, in DRG neurons, NO has inhibitory effect on I(Ca), which is independent of NO-induced increase of basal [Ca(2+)](i), through cGMP-dependent pathway.  相似文献   

3.
Osanai M  Tanaka S  Takeno Y  Takimoto S  Yagi T 《PloS one》2010,5(10):e13738
The calcium ion (Ca(2+)) is an important messenger for signal transduction, and the intracellular Ca(2+) concentration ([Ca(2+)](i)) changes in response to an excitation of the cell. To reveal the spatiotemporal properties of the propagation of an excitatory signal with action potentials in the primary visual cortical circuit, we conducted a Ca(2+) imaging study on slices of the mouse visual cortex. Electrical stimulation of layer 4 evoked [Ca(2+)](i) transients around the stimulus electrode. Subsequently, the high [Ca(2+)](i) region mainly propagated perpendicular to the cortical layer (vertical propagation), with horizontal propagation being restricted. When the excitatory synaptic transmission was blocked, only weak and concentric [Ca(2+)](i) transients were observed. When the action potential was blocked, the [Ca(2+)](i) transients disappeared almost completely. These results suggested that the action potential contributed to the induction of the [Ca(2+)](i) transients, and that excitatory synaptic connections were involved in the propagation of the high [Ca(2+)](i) region in the primary visual cortical circuit. To elucidate the involvement of inhibitory synaptic connections in signal propagation in the primary visual cortex, the GABA(A) receptor inhibitor bicuculline was applied. In this case, the evoked signal propagated from layer 4 to the entire field of view, and the prolonged [Ca(2+)](i) transients were observed compared with the control condition. Our results suggest that excitatory neurons are widely connected to each other over the entire primary visual cortex with recurrent synapses, and inhibitory neurons play a fundamental role in the organization of functional sub-networks by restricting the propagation of excitation signals.  相似文献   

4.
After incubation with 2-butylamino-2-demethoxy-hypocrellin A (2-BA-2-DMHA), photodynamically induced change in the cytoplasmic free calcium concentration ([Ca(2+)](i)) and its effect on cell damage were investigated in human gastric cancer (MGC-803). Fluorescence spectrophotometry measurement indicated that the photosensitization of MGC-803 by 2-BA-2-DMHA caused an increase in intracellular calcium [Ca(2+)](i), and this increase in [Ca(2+)](i) showed a dependence on the concentration of 2-BA-2-DMHA, light dose and extracellular [Ca(2+)](e). This phenomenon of intracellular calcium accumulation was further confirmed by using laser scanning confocal microscopy (LSCM). Furthermore, the results from MTT assay and flow cytometry analysis suggested that chelation of extracellular calcium by EGTA or intracellular calcium by BAPTA could inhibit photodynamically induced cell killing, while increase of [Ca(2+)](i) by thapsigargin (TG), a highly specific inhibitor of the Ca(2+)-ATPase, or by A23187, a calcium ionophore could enhance this action. Meanwhile, the nucleus morphology was also investigated by fluorescence microscopy. The results indicated that the increase in intracellular Ca(2+) concentration was responsible for 2-BA-2-DMHA photodynamically induced damage to MGC-803.  相似文献   

5.
The G protein-coupled Ca(2+)-sensing receptor (CaR) is an allosteric protein that responds to two different agonists, Ca(2+) and aromatic amino acids, with the production of sinusoidal or transient oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, we examined whether these differing patterns of [Ca(2+)](i) oscillations produced by the CaR are mediated by separate signal transduction pathways. Using real time imaging of changes in phosphatidylinositol 4,5-biphosphate hydrolysis and generation of inositol 1,4,5-trisphosphate in single cells, we found that stimulation of CaR by an increase in the extracellular Ca(2+) concentration ([Ca(2+)](o)) leads to periodic synthesis of inositol 1,4,5-trisphosphate, whereas l-phenylalanine stimulation of the CaR does not induce any detectable change in the level this second messenger. Furthermore, we identified a novel pathway that mediates transient [Ca(2+)](i) oscillations produced by the CaR in response to l-phenylalanine, which requires the organization of the actin cytoskeleton and involves the small GTPase Rho, heterotrimeric proteins of the G(12) subfamily, the C-terminal region of the CaR, and the scaffolding protein filamin-A. Our model envisages that Ca(2+) or amino acids stabilize unique CaR conformations that favor coupling to different G proteins and subsequent activation of distinct downstream signaling pathways.  相似文献   

6.
Fast nongenomic steroid actions in several cell types seem to be mediated by second messengers such as intracellular calcium ([Ca(2+)](i)) and inositol 1,4,5-trisphosphate (IP(3)). We have shown the presence of both slow calcium transients and IP(3) receptors associated with cell nuclei in cultured skeletal muscle cells. The effect of steroids on [Ca(2+)](i) was monitored in Fluo 3-acetoxymethyl ester-loaded myotubes by either confocal microscopy or fluorescence microscopy, with the use of out-of-focus fluorescence elimination. The mass of IP(3) was determined by radioreceptor displacement assay. [Ca(2+)](i) changes after either aldosterone (10-100 nM) or testosterone (50-100 nM) were observed; a relatively fast (<2 min) calcium transient, frequently accompanied by oscillations, was evident with both hormones. A slow rise in [Ca(2+)](i) that reached its maximum after a 30-min exposure to aldosterone was also observed. Calcium responses seem to be fairly specific for aldosterone and testosterone, because several other steroid hormones do not induce detectable changes in fluorescence, even at 100-fold higher concentrations. The mass of IP(3) increased transiently to reach two- to threefold the basal level 45 s after addition of either aldosterone or testosterone, and the IP(3) transient was more rapid than the fast calcium signal. Spironolactone, an inhibitor of the intracellular aldosterone receptor, or cyproterone acetate, an inhibitor of the testosterone receptor, had no effect on the fast [Ca(2+)](i) signal or in the increase in IP(3) mass. These signals could mean that there are distinct nongenomic pathways for the action of these two steroids in skeletal muscle cells.  相似文献   

7.
Faber GM  Rudy Y 《Biophysical journal》2000,78(5):2392-2404
Sodium overload of cardiac cells can accompany various pathologies and induce fatal cardiac arrhythmias. We investigate effects of elevated intracellular sodium on the cardiac action potential (AP) and on intracellular calcium using the Luo-Rudy model of a mammalian ventricular myocyte. The results are: 1) During rapid pacing, AP duration (APD) shortens in two phases, a rapid phase without Na(+) accumulation and a slower phase that depends on [Na(+)](i). 2) The rapid APD shortening is due to incomplete deactivation (accumulation) of I(Ks). 3) The slow phase is due to increased repolarizing currents I(NaK) and reverse-mode I(NaCa), secondary to elevated [Na(+)](i). 4) Na(+)-overload slows the rate of AP depolarization, allowing time for greater I(Ca(L)) activation; it also enhances reverse-mode I(NaCa). The resulting increased Ca(2+) influx triggers a greater [Ca(2+)](i) transient. 5) Reverse-mode I(NaCa) alone can trigger Ca(2+) release in a voltage and [Na(+)](i)-dependent manner. 6) During I(NaK) block, Na(+) and Ca(2+) accumulate and APD shortens due to enhanced reverse-mode I(NaCa); contribution of I(K(Na)) to APD shortening is negligible. By slowing AP depolarization (hence velocity) and shortening APD, Na(+)-overload acts to enhance inducibility of reentrant arrhythmias. Shortened APD with elevated [Ca(2+)](i) (secondary to Na(+)-overload) also predisposes the myocardium to arrhythmogenic delayed afterdepolarizations.  相似文献   

8.
Calbindin-D28k (CaBP) is a calcium-binding protein found in specific neuronal populations in the mammalian brain that, as a result of its proposed calcium-buffering action, may protect neurons against potentially harmful increases in intracellular calcium. We have stably transfected HEK 293 cells with recombinant human CaBP in order to determine the influence of this protein upon transient increases in intracellular ionic calcium concentration ([Ca(2+)](i)) induced either by transient transfection of the NR1 and NR2A subunits of the N-methyl-D-aspartate (NMDA) receptor and brief exposure to glutamate, photolysis of the caged calcium compound NP-EGTA, or exposure to the Ca(2+)]-ionophore 4-Br-A23187. The presence of CaBP did not significantly reduce the peak [Ca(2+)](i)stimulated by glutamate activation of NMDA receptors but significantly prolonged the recovery to baseline values. Flash photolysis of NP-EGTA in control cells resulted in an almost instantaneous increase in [Ca(2+)](i)followed by a bi-exponential recovery to baseline values. In cells stably expressing CaBP, the peak [Ca(2+)](i)levels were not statistically different from the controls, however, there was a significant prolongation of the initial portion of the slow recovery phase. In cells exposed to 4-Br-A23187, the presence of CaBP significantly reduced the rate of rise of [Ca(2+)](i), reduced the peak response, slowed the rate of recovery, and reduced the depolarization of mitochondria. In studies of delayed, Ca(2+)]-dependent cell death, CaBP transfected cells exhibited enhanced survival 24h after a 1-h exposure to 200 microM NMDA. However, necrotic cell death observed after the first 6h was not prevented by the presence of CaBP. These results provide direct evidence for a Ca(2+)-buffering effect of CaBP which serves to limit Ca(2+)entry and the depolarization of mitochondria, thereby protecting cells from death mediated most likely by apoptosis.  相似文献   

9.
To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent indicators, these do not increase buffering. Slow injections of HCl (changing pH(i) by 0.1-0.2 pH units min(-1)) first decreased [Ca(2+)](i) while pH(i) was still close to normal, but then increased [Ca(2+)](i) when pH(i) fell below 6.8-7. As pH(i) recovered after such an injection, [Ca(2+)](i) started to fall but then increased transiently before returning to its preinjection level. Both the acid-induced decrease and the recovery-induced increase in [Ca(2+)](i) were abolished by cyclopiazonic acid, which empties calcium stores. Caffeine with or without ryanodine lowered [Ca(2+)](i) and converted the acid-induced fall in [Ca(2+)](i) to an increase. Injection of ortho-vanadate increased steady-state [Ca(2+)](i) and its response to acidification, which was again blocked by CPA. The normal initial response to 10 mM caffeine, a transient increase in [Ca(2+)](i), did not occur with pH(i) below 7.1. When HCl was injected during a series of short CaCl(2) injections, the [Ca(2+)](i) transients (recorded as changes in the potential (V(Ca)) of the Ca(2+)-sensitive microelectrode), were reduced by only 20% for a 1 pH unit acidification, as was the rate of recovery after each injection. Calcium transients induced by brief depolarizations, however, were reduced by 60% by a similar acidification. These results suggest that low pH(i) has little effect on the plasma membrane calcium pump (PMCA) but important effects on the calcium stores, including blocking their response to caffeine. Acidosis inhibits spontaneous calcium release via the RYR, and leads to increased store content which is unloaded when pH(i) returns to normal. Spontaneous release is enhanced by the rise in [Ca(2+)](i) caused by inhibiting the PMCA.  相似文献   

10.
Wang L  Fu RG  Liu XD  Gui BS  Sun Q  Chen C  Zhao YF  Dong L 《生理学报》2010,62(6):529-534
In this study, we investigated the mechanism of linoleic acid-stimulated increase in intracellular calcium concentration ([Ca(2+)](i)) in pancreatic islet β-cells. Pancreatic islet cells were primarily isolated from rats and cultured for the experiments. The cells were loaded with Fluo-3/AM, the indicator of [Ca(2+)](i), and the intensity of Fluo-3 was measured using confocal microscope. The islet β-cells were identified by immunocytochemical staining with insulin antibody after recording. The drugs were given by perfusion system. The results showed that linoleic acid (20 μmol/L) stimulated [Ca(2+)](i) increase with the first peak increase and the following plateau increase. Linoleic acid-stimulated [Ca(2+)](i) increase was partly inhibited by removal of extracellular calcium and by transient receptor potential (TRP) channel blocker, La(3+), and it was totally blocked by exhaustion of intracellular calcium stores and inhibition of phospholipase C. It is concluded that linoleic acid stimulates [Ca(2+)](i) increase in islet β-cells through both extracellular calcium influx via TRP channels and calcium release from intracellular calcium stores.  相似文献   

11.
Arginine vasopressin (AVP) regulates biological processes by binding to G protein-coupled receptors. In Swiss 3T3 fibroblasts, expressing the V(1a) subtype of vasopressin receptors, AVP mobilizes calcium from intracellular stores. In proliferating cells, the AVP-induced increase in intracellular calcium concentration ([Ca(2+)](i)) was mediated by G proteins of the G(q) family, which are insensitive to pertussis toxin (PTX) pretreatment of the cells. In quiescent cells, the AVP-induced increase in [Ca(2+)](i) was partially PTX-sensitive, suggesting an involvement of G(i) proteins. We confirmed this by photoaffinity labeling of G proteins in Swiss 3T3 cell membranes activated by AVP. In Swiss 3T3 cells arrested in the G(0)/G(1) phase of the cell cycle, the AVP-induced increase in [Ca(2+)](i) was also partially PTX-sensitive but was PTX-insensitive in cells arrested in other phases of the cell cycles. The blocking effect of PTX pretreatment in G(0)/G(1) cells was mimicked by microinjection of antisense oligonucleotides suppressing the expression of the Galpha(i3) subunits. These results were confirmed by microinjection of antibodies directed against the C terminus of G protein alpha-subunits. The data presented indicate that in Swiss 3T3 fibroblasts synchronized in the G(0)/G(1) phase of the cell cycle the V(1a) receptor couples to G(q/11) and G(i3) to activate the phospholipase C-beta, leading to release of intracellular calcium.  相似文献   

12.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

13.
Ovarian granulosa cell and testicular Sertoli cell functions are regulated by the tropic action of the pituitary follicle-stimulating hormone (FSH), which may exert pleiotropic effects using a variety of signaling pathways. The effects of FSH on the mobilization of Ca(2+) into granulosa and Sertoli cells have been widely studied, but whether all the effects of the hormone are mediated by the single G-protein-coupled (G(s)) receptor with the seven-transmembrane structure (R1) has remained an enigma. With the object of resolving this mystery, we have compared the hormonal responses of HEK 293 cells transfected with three different cloned FSH receptor cDNAs of testis/ovary, designated R1 (G(s)), R2 (similar to R1 but having a shorter carboxyl terminus), and R3, a novel FSH receptor exhibiting a growth factor type I receptor motif. The latter two that use the same DNA segment for alternative splicing of the single large 80- to 100-kilobase gene create different structural motifs and carboxyl termini. Of the three receptors, only the FSH-R3 type induced a significant rise in intracellular free calcium concentration ([Ca(2+)](i)), as measured by single cell fluorescence digital imaging with the Ca(2+) sensitive dye fura-2AM. FSH induced a rapid [Ca(2+)](i) response that was concentration dependent. The response was hormone-specific, as neither its individual alpha/beta subunits nor the related glycoprotein hormone LH were effective. To determine whether the [Ca(2+)](i) response was due to Ca(2+) influx or to intracellular Ca(2+) mobilization, cells were exposed to Ca(2+)-free buffer and to the Ca(2+)-channel blocker diltiazem (10(-5) M). FSH-Induced [Ca(2+)](i) responses were inhibited in Ca(2+)-free buffer and abrogated in the presence of diltiazem. These novel data demonstrate that FSH can increase [Ca(2+)](i) through L-type voltage-dependent Ca(2+) channels via the growth factor type 1 receptor. Our findings support the concept that different receptor motifs act to integrate intracellular signaling events.  相似文献   

14.
The interplay between activated G proteins and intracellular calcium ([Ca(2+)](i)) in the regulation of secretion was studied in the macrophage, coupling membrane capacitance with calcium-sensitive microfluorimetry. Intracellular elevation of either the nonhydrolyzable analogue of GTP, guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S), or [Ca(2+)](i) enhanced the amplitude and shortened the time course of stimulus-induced secretion in a dose-dependent manner. Both the ionophore- and the stimulus-induced secretory response were abolished in the presence of guanosine-5'-O-(2-thiodiphosphate) (GDP beta S). The K(d) of Ca(2+)-driven secretion was independent of GTP gamma S concentration, whereas the K(d) of the GTP gamma S-driven response decreased from 63 to 31 microM in the presence of saturating concentrations of [Ca(2+)](i). The time course of stimulus-induced secretion was dependent upon the concentration of [Ca(2+)](i). The time course of GTP gamma S-driven secretion was concentration-independent at high levels of [Ca(2+)](i), suggesting that a calcium-dependent translocation/binding step was rate-limiting. Our data strongly support a model in which [Ca(2+)](i) and activated G proteins act independently of one another in the sequential regulation of macrophage secretion. [Ca(2+)](i) appears to play a role in the recruitment and priming of vesicles from reserve intracellular pools at a step that is upstream of G protein activation. While activated, G proteins appear to play a key role in fusion of docked vesicles. Thus, secretion can result either from activating more G proteins or from elevating [Ca(2+)](i) at basal levels of G protein activation.  相似文献   

15.
Idoux E  Mertz J 《PloS one》2011,6(12):e28685
The variations of the intracellular concentration of calcium ion ([Ca(2+)](i)) are at the heart of intracellular signaling, and their imaging is therefore of enormous interest. However, passive [Ca(2+)](i) imaging provides no control over these variations, meaning that a full exploration of the functional consequences of [Ca(2+)](i) changes is difficult to attain. The tools designed so far to modify [Ca(2+)](i), even qualitatively, suffer drawbacks that undermine their widespread use. Here, we describe an electro-optical technique to quantitatively set [Ca(2+)](i), in real time and with sub-cellular resolution, using two-photon Ca(2+) uncaging and dynamic-clamp. We experimentally demonstrate, on neurons from acute olfactory bulb slices of Long Evans rats, various capabilities of this technique previously difficult to achieve, such as the independent control of the membrane potential and [Ca(2+)](i) variations, the functional knocking-in of user-defined virtual voltage-dependent Ca(2+) channels, and the standardization of [Ca(2+)](i) patterns across different cells. Our goal is to lay the groundwork for this technique and establish it as a new and versatile tool for the study of cell signaling.  相似文献   

16.
Postmyocardial infarction (MI) rat myocytes demonstrated depressed Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. We investigated whether NCX1 downregulation in normal myocytes resulted in contractility changes observed in MI myocytes. Myocytes infected with adenovirus expressing antisense (AS) oligonucleotides to NCX1 had 30% less NCX1 at 3 days and 66% less NCX1 at 6 days. The half-time of relaxation from caffeine-induced contracture was twice as long in ASNCX1 myocytes. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase abundance, SR Ca(2+) uptake, resting membrane potential, action potential amplitude and duration, L-type Ca(2+) current density and cell size were not affected by ASNCX1 treatment. At extracellular Ca(2+) concentration ([Ca(2+)](o)) of 5 mM, ASNCX1 myocytes had significantly lower contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents than control myocytes. At 0.6 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents were significantly higher in ASNCX1 myocytes. At 1.8 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes were not different between control and ASNCX1 myocytes. This pattern of contractile and [Ca(2+)](i) transient abnormalities in ASNCX1 myocytes mimics that observed in rat MI myocytes. We conclude that downregulation of NCX1 in adult rat myocytes resulted in decreases in both Ca(2+) influx and efflux during a twitch. We suggest that depressed NCX1 activity may partly account for the contractile abnormalities after MI.  相似文献   

17.
Endothelial intracellular calcium ([Ca(2+)](i)) plays an important role in the function of the juxtaglomerular vasculature. The present studies aimed to identify the existence and molecular elements of an endothelial calcium wave in cultured glomerular endothelial cells (GENC). GENCs on glass coverslips were loaded with Fluo-4/Fura red, and ratiometric [Ca(2+)](i) imaging was performed using fluorescence confocal microscopy. Mechanical stimulation of a single GENC caused a nine-fold increase in [Ca(2+)](i), which propagated from cell to cell throughout the monolayer (7.9 +/- 0.3 microm/s) in a regenerative manner (without decrement of amplitude, kinetics, and speed) over distances >400 microm. Inhibition of voltage-dependent calcium channels with nifedipine had no effect on the above parameters, but the removal of extracellular calcium reduced Delta[Ca(2+)](i) by 50%. Importantly, the gap junction uncoupler alpha-glycyrrhetinic acid or knockdown of connexin 40 (Cx40) by transfecting GENCs with Cx40 short interfering RNA (siRNA) almost completely eliminated Delta[Ca(2+)](i) and the calcium wave. Breakdown of extracellular ATP using a scavenger cocktail (apyrase and hexokinase) or nonselective inhibition of purinergic P2 receptors with suramin, had similar blocking effects. Scraping cells off along a line eliminated physical contact between cells but did not effect calcium wave propagation. Using an ATP biosensor technique, we detected a significant elevation in extracellular ATP (Delta = 76 +/- 2 microM) during calcium wave propagation, which was abolished by Cx40 siRNA treatment (Delta = 6 +/- 1 microM). These studies suggest that connexin 40 hemichannels and extracellular ATP are key molecular elements of the glomerular endothelial calcium wave, which may serve important juxtaglomerular functions.  相似文献   

18.
It was discovered about 30 years ago that a dramatic increase in intracellular calcium ion concentration ([Ca(2+)](i)) occurs at fertilization and that this increase acts as the pivotal signal for egg activation. Later, the Ca(2+) signal at fertilization turned out to be ubiquitous among animal species. Extensive advance has been brought during these 30 years in research on spatiotemporal aspects and signaling mechanisms of the [Ca(2+)](i) increase, sperm factors that induce the Ca(2+) response, and cell cycle resumption caused by the [Ca(2+)](i) rise. I provide a historical account of these advances in mammals, sea urchins, and a few other models.  相似文献   

19.
Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.  相似文献   

20.
Control of cerebral vasculature differs from that of systemic vessels outside the blood-brain barrier. The hypothesis that the endothelium modulates vasomotion via direct myoendothelial coupling was investigated in a small vessel of the cerebral circulation. In the primary branch of the rat basilar artery, membrane potential, diameter, and calcium dynamics associated with vasomotion were examined using selective inhibitors of endothelial function in intact and endothelium-denuded arteries. Vessel anatomy, protein, and mRNA expression were studied using conventional electron microscopy high-resolution ultrastructural and confocal immunohistochemistry and quantitative PCR. Membrane potential oscillations were present in both endothelial cells and smooth muscle cells (SMCs), and these preceded rhythmical contractions during which adjacent SMC intracellular calcium concentration ([Ca(2+)](i)) waves were synchronized. Endothelium removal abolished vasomotion and desynchronized adjacent smooth muscle cell [Ca(2+)](i) waves. N(G)-nitro-l-arginine methyl ester (10 microM) did not mimic this effect, and dibutyryl cGMP (300 muM) failed to resynchronize [Ca(2+)](i) waves in endothelium-denuded arteries. Combined charybdotoxin and apamin abolished vasomotion and depolarized and constricted vessels, even in absence of endothelium. Separately, (37,43)Gap27 and (40)Gap27 abolished vasomotion. Extensive myoendothelial gap junctions (3 per endothelial cell) composed of connexins 37 and 40 connected the endothelial cell and SMC layers. Synchronized vasomotion in rat basilar artery is endothelium dependent, with [Ca(2+)](i) waves generated within SMCs being coordinated by electrical coupling via myoendothelial gap junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号