首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect of 1,25 (OH)2 vitamin D3 on basal 45Ca uptake was examined in vascular smooth muscle cells cultured from mesenteric arteries of spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) normotensive rats. Basal uptake of 45Ca was significantly greater in myocytes of WKY than SHR at 5, 10, 30 and 60 min incubation with the isotope. Incubation with 1 ng/ml 1,25 (OH)2 vitamin D3 for 48 hr increased basal 45Ca uptake between 1-10 min in SHR and between 5-10 min in WKY. The dose-response relationship indicated that cells from both strains are equally sensitive to the calciotropic effects of 1,25 (OH)2 vitamin D3 with half-maximal stimulation occurring at approximately 0.3-0.4 ng/ml. In cells of both strains maximal stimulation of 45Ca uptake was achieved only after a 12-24 hr period of incubation with hormone and pretreatment with cycloheximide inhibited 1,25 (OH)2 vitamin D3-enhanced 45Ca uptake. Although 45Ca binding by extracellular matrix material was significantly greater in WKY than SHR, 1,25 (OH)2 vitamin D3 had no effect on the amount of matrix 45Ca binding in either strain. These results suggest that 1,25 (OH)2 vitamin D3 induces an increase in intracellular protein synthesis that results in enhanced 45Ca uptake. The similar responses of the two strains indicate that hypertensive smooth muscle is not more sensitive to 1,25 (OH)2 vitamin D3 and the Ca2+ response is a general property of vascular muscle.  相似文献   

3.
4.
We examined the effects of 1,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) on the distribution and mobility of the vitamin D receptor (VDR) in the enterocyte-like Caco-2 cell. Confocal microscopy showed that a green fluorescent protein-vitamin D receptor (GFP-VDR) fusion protein is predominantly nuclear (58%) and it does not associate with the apical or basolateral membrane of proliferating or polarized, differentiated cells. In contrast to the previously studied cell types, neither endogenous VDR nor GFP-VDR levels accumulate in the nucleus following 1,25(OH)(2)D(3) treatment (100 nM, 30 min). However, in nuclear photobleaching experiments nuclear GFP-VDR import was significantly increased by 1,25(OH)(2)D(3) during both an early (0-5 min) and later (30-35 min) period (20% per 5 min). Compared to the natural ligand, nuclear import of GFP-VDR was 60% lower in cells treated with the 1,25(OH)(2)D(3) analog, 1-alpha-fluoro-16-ene-20-epi-23-ene-26,27-bishomo-25-hydroxyvitamin D(3) (Ro-26-9228, 5 min, 100 nM). Downstream events like ligand-induced association of VDR with chromatin at 1 h and the accumulation of CYP24 mRNA were significantly lower in Ro-26-9228 treated cells compared to 1,25(OH)(2)D(3) (60 and 95% lower, respectively). Collectively our data are consistent with a role for ligand-induced nuclear VDR import in receptor activation. In addition, ligand-dependent VDR nuclear import appears to be balanced by export, thus accounting for the lack of nuclear VDR accumulation even when VDR import is significantly elevated.  相似文献   

5.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] initiates the hydrolysis of sphingomyelin in ROS 17/2.8 osteosarcoma cells with the resultant generation of cell-associated ceramide. Increases in ceramide levels were detectable at 15 min and maximal one hour after exposure of cells to 1,25(OH)(2)D(3). Neither 1,25(OH)(2)D(3) nor exogenous ceramide elicited a change in cytosolic free Ca(2+) ([Ca(2+)](i)). Transient elevations in [Ca(2+)](i) were observed when cells were exposed to exogenous sphingosine, but there was no detectable conversion of ceramide to sphingosine in 1, 25(OH)(2)D(3)-treated cells. Ceramide also did not stimulate Ca(2+) uptake across ROS 17/2.8 cell plasma membranes. Collectively, these results suggest that 1,25(OH)(2)D(3) activates sphingomyelin turnover in ROS 17/2.8 osteosarcoma cells but that the sphingolipid metabolite ceramide is not responsible for 1,25(OH)(2)D(3)-induced activation of plasma membrane Ca(2+) channels.  相似文献   

6.
If both rapid and genomic pathways may co-exist in the same cell, the involvement of the nuclear vitamin D receptor (VDR) in the rapid effects of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) remains unclear. We therefore studied rapid and long term effects of 1,25-(OH)(2)D(3) in cultured skin fibroblasts from three patients with severe vitamin D-resistant rickets and one age-matched control. Patients bear homozygous missense VDR mutations that abolished either VDR binding to DNA (patient 1, mutation K45E) or its stable ligand binding (patients 2 and 3, mutation W286R). In patient 1 cells, 1,25-(OH)(2)D(3) (1 pm-10 nm) had no effect on either intracellular calcium or 24-hydroxylase (enzyme activity and mRNA expression). In contrast, cells bearing the W286R mutation had calcium responses to 1,25-(OH)(2)D(3) (profile and magnitude) and 24-hydroxylase responses to low (1 pm-100 pm) 1,25-(OH)(2)D(3) concentrations (activity, CYP24, and ferredoxin mRNAs) similar to those of controls. The blocker of Ca(2+) channels, verapamil, impeded both rapid (calcium) and long term (24-hydroxylase activity, CYP24, and ferredoxin mRNAs) responses in patient and control fibroblasts. The MEK 1/2 kinase inhibitor PD98059 also blocked the CYP24 mRNA response. Taken together, these results suggest that 1,25-(OH)(2)D(3) rapid effects require the presence of VDR and control, in part, the first step of 1,25-(OH)(2)D(3) catabolism via increased mRNA expression of the CYP24 and ferredoxin genes in the 24-hydroxylase complex.  相似文献   

7.
Calcium signaling in cancer and vitamin D   总被引:3,自引:0,他引:3  
Calcium signals induced by the Ca(2+) regulatory hormone 1,25(OH)(2)D(3) may determine the fate of the cancer cell. We have shown that, in breast cancer cell lines, 1,25(OH)(2)D(3) induces a sustained increase in concentration of intracellular Ca(2+) ([Ca(2+)](i)) by depleting the endoplasmic reticulum (ER) Ca(2+) stores via inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel and activating Ca(2+) entry from the extracellular space via voltage-insensitive Ca(2+) channels. In normal cells, 1,25(OH)(2)D(3) triggered a transient Ca(2+) response via activation of voltage-dependent Ca(2+) channels, which were absent in breast cancer cells. The normal cells, but not breast cancer cells, expressed the Ca(2+) binding/buffering protein calbindin-D(28k) and were capable of buffering [Ca(2+)](i) increases induced by a mobilizer of the ER Ca(2+) stores, thapsigargin, or a Ca(2+) ionophore, ionomycin. The 1,25(OH)(2)D(3)-induced sustained increase in [Ca(2+)](i) in breast cancer cells was associated with induction of apoptotic cell death, whereas the transient [Ca(2+)](i) increase in normal cells was not. The forced expression of calbindin-D(28k) in cytosol or increase in the cytosolic Ca(2+) buffering capacity with the cell-permeant Ca(2+) buffer BAPTA prevented induction of apoptosis with 1,25(OH)(2)D(3) in cancer cells. The sustained increase in [Ca(2+)](i) in breast cancer cells was associated with activation of the Ca(2+)-dependent apoptotic proteases, mu-calpain and caspase-12, as evaluated with antibodies to active (cleaved) forms of the enzymes and the fluorogenic peptide substrates. Selective inhibition of the Ca(2+) binding sites of mu-calpain decreased apoptotic indices in the cancer cells treated with 1,25(OH)(2)D(3), thapsigargin, or ionomycin. The mu-calpain activation preceded expression/activation of caspase-12, and calpain was required for activation/cleavage of caspase-12. Certain non-calcemic vitamin D analogs (e.g., EB 1089) triggered a sustained [Ca(2+)](i) increase, activated Ca(2+)-dependent apoptotic proteases, and induced apoptosis in breast cancer cells in a fashion similar to that of 1,25(OH)(2)D(3). The 1,25(OH)(2)D(3)-induced transient Ca(2+) response in normal mammary epithelial cells was not accompanied by activation of mu-calpain and caspase-12. In conclusion, we have identified the novel apoptotic pathway in breast carcinoma cells treated with 1,25(OH)(2)D(3): increase in [Ca(2+)](i)-->mu-calpain activation-->caspase-12 activation-->apoptosis. Our results support the hypothesis that 1,25(OH)(2)D(3) directly activates this apoptotic pathway by inducing a sustained increase in [Ca(2+)](i). Differences of Ca(2+) regulatory mechanisms in cancer versus normal cells seem to allow 1,25(OH)(2)D(3) and vitamin D analogs to induce Ca(2+)-mediated apoptosis selectively in breast cancer cells. Thus, deltanoids may prove to be useful in the treatment of tumors susceptible to induction of Ca(2+)-mediated apoptosis.  相似文献   

8.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

9.
1alpha,25-Dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) (ED-71), an analog of active vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], possesses a hydroxypropoxy substituent at the 2beta-position of 1,25(OH)(2)D(3). ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)(2)D(3). Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)(2)D(3), an epimer of 1,25(OH)(2)D(3) at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)(2)D(3) at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D(3) analogs were found to be 1,25(OH)(2)D(3)>ED-71> or =3-epi-1,25(OH)(2)D(3)>3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

10.
We recently showed that excessive fructose consumption, already associated with numerous metabolic abnormalities, reduces rates of intestinal Ca(2+) transport. Using a rat lactation model with increased Ca(2+) requirements, we tested the hypothesis that mechanisms underlying these inhibitory effects of fructose involve reductions in renal synthesis of 1,25-(OH)(2)D(3). Pregnant and virgin (control) rats were fed isocaloric fructose or, as controls, glucose, and starch diets from d 2 of gestation to the end of lactation. Compared to virgins, lactating dams fed glucose or starch had higher rates of intestinal transcellular Ca(2+) transport, elevated intestinal and renal expression of Ca(2+) channels, Ca(2+)-binding proteins, and CaATPases, as well as increased levels of 25-(OH)D(3) and 1,25-(OH)(2)D(3). Fructose consumption prevented almost all of these lactation-induced increases, and reduced vitamin D receptor binding to promoter regions of Ca(2+) channels and binding proteins. Changes in 1,25-(OH)(2)D(3) level were tightly correlated with alterations in expression of 1α-hydroxylase but not with levels of parathyroid hormone and of 24-hydroxylase. Bone mineral density, content, and mechanical strength each decreased with lactation, but then fructose exacerbated these effects. When Ca(2+) requirements increase during lactation or similar physiologically challenging conditions, excessive fructose consumption may perturb Ca(2+) homeostasis because of fructose-induced reductions in synthesis of 1,25-(OH)(2)D(3).  相似文献   

11.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) is most strongly regulated by dietary calcium and the action of parathyroid hormone to increase 1alpha-hydroxylase (1alpha-OHase) and decrease 24-hydroxylase (24-OHase) in kidney proximal tubules. This study examines the hypothesis that 1,25-(OH)(2)D(3) synthesis, induced by dietary calcium restriction, is also the result of negative feedback regulation blockade. Rats fed a low calcium (0.02%, -Ca) diet and given daily oral doses of vitamin D (0, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 microg) remained hypocalcemic despite increasing levels of serum calcium in relation to the vitamin D dose. Plasma levels of 1,25-(OH)(2)D(3) rose to high levels (1200 pg/ml) at the high vitamin D dose levels. As expected, thyroparathyroidectomy caused a rapid fall in serum 1,25-(OH)(2)D(3). In rats fed a 0.47% calcium diet (+Ca) supplemented with vitamin D (4 microg/day), exogenous 1,25-(OH)(2)D(3) suppressed renal 1alpha-OHase and stimulated the 24-OHase. In rats fed the -Ca diet, vitamin D was unable to suppress the renal 1alpha-OHase or stimulate the renal 24-OHase. In contrast, vitamin D was fully able to stimulate intestinal 24-OHase. Intestinal vitamin D receptor (VDR) was present under all circumstances, while kidney VDR was absent under hypocalcemic conditions and present under normocalcemic conditions. It appears that tissue-specific down-regulation of VDR by hypocalcemia blocks the 1,25-(OH)(2)D(3) suppression of the 1alpha-OHase and upregulation of the 24-OHase in the kidney, causing a marked accumulation of 1,25-(OH)(2)D(3) in the plasma.  相似文献   

12.
13.
1,25(OH)(2)-Vitamin D(3) [1,25(OH)(2)D(3)], PTH and 17beta-estradiol increase intracellular Ca(2+) levels ([Ca(2+)](i)) in rat enterocytes by stimulating inner Ca(2+) store mobilization and voltage-dependent Ca(2+) channels through non-genomic activation of second-messenger cascades. The participation of store-operated Ca(2+) (SOC) channels in 17beta-estradiol regulation of enterocyte [Ca(2+)](i) has also been suggested. The aim of this work was to investigate whether PTH and/or 17beta-estradiol exert additive or synergistic effects acting in concert with the classic intestinal calciotropic hormone 1,25(OH)(2)D(3). Fura-2-loaded rat duodenal cells were stimulated using rPTH (10 nM), 17beta-estradiol (0.1 nM) or 1,25(OH)(2)D(3) (0.1 nM). The resulting Ca(2+) signal was characterized by an almost immediate rise in [Ca(2+)](i) (within 30 s) rapidly reaching peak levels, followed by a plateau phase that remained sustained as long as the cells were exposed to the stimulus. The addition of PTH at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, the addition of the secosteroid after the PTH-induced effect, did not induce additional increases in [Ca(2+)](i). Simultaneous treatment with both hormones resulted in an elevation of [Ca(2+)](i) equivalent to the maximal level caused by either agonist alone, suggesting common components for [Ca(2+)]i stimulation by PTH and 1,25(OH)(2)D(3). Treatment with 17beta-estradiol at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, treatment with the secosteroid after the 17beta-estradiol effect, induced additional increments in [Ca(2+)](i) (58 % and 63 %, respectively). Simultaneous treatment of enterocytes with both steroids potentiated their individual effects to the same extent as when added sequentially, also indicative of additive actions mediated by different sources of calcium signaling cascades. Moreover, 17beta-estradiol failed to further increase the 1,25(OH)(2)D(3)-induced initial Ca(2+) elevation in Ca(2+)-free medium, thus suggesting that extracellular influx mechanisms rather than intracellular Ca(2+) mobilization account for estrogen potentiation of 1,25(OH)(2)D(3) modulation of [Ca(2+)](i) in duodenal cells.  相似文献   

14.
The active form of vitamin D(3) (1,25(OH)(2)D(3)) induces an increase in the intracellular free calcium ([Ca(2+)](i)) and caspase-independent cell death in human breast cancer cells. Here we show that the treatment of MCF-7 breast cancer cells with 1,25(OH)(2)D(3) or its chemotherapeutic analog, EB 1089, releases Ca(2+) from the endoplasmic reticulum. The increase in [Ca(2+)](i) was associated with the activation of a calcium-dependent cysteine protease, mu-calpain. Interestingly, ectopic expression of a calcium-binding protein, calbindin-D(28k), in MCF-7 cells not only attenuated the elevation in [Ca(2+)](i) and calpain activation, but also reduced death triggered by vitamin D compounds. Similarly, the inhibition of calpain activity by structurally unrelated chemical inhibitors increased the survival of the cells and reduces the amount of annexin V-positive cells. Despite the complete absence of effector caspase activation, transmission electron microscopy of MCF-7 cells treated with 1,25(OH)(2)D(3) or EB 1089 revealed apoptosis-like morphology characterized by the condensed cytoplasm, nuclei, and chromatin. Overall, these results suggest that calpain may take over the role of the major execution protease in apoptosis-like death induced by vitamin D compounds. Thus, these compounds may prove useful in the treatment of tumors resistant to therapeutic agents dependent on the classical caspase cascade.  相似文献   

15.
Microarray technology has been used to discover 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) induced gene expression changes in rat small intestine in vivo. Here, we report gene expression changes related to intestinal absorption or transport, the immune system and angiogenesis in response to 1,25-(OH)(2)D(3). Vitamin D deficient rats were intrajugularly given vehicle or vehicle containing 730 ng of 1,25-(OH)(2)D(3)/kg of body weight. Intestinal mRNA was harvested from duodenal mucosa at 15 min, 1, 3, and 6 h post-injection and studied by Affymetrix microarrays. Genes significantly affected by 1,25-(OH)(2)D(3) were confirmed by quantitative RT-PCR with remarkable agreement. The most strongly affected gene in intestine was CYP24 with 97-fold increase at 6 h post-1,25-(OH)(2)D(3) treatment. Intestinal calcium absorption genes: TRPV5, TRPV6, calbindin D(9k), and Ca(2+) dependent ATPase all were up-regulated in response to 1,25-(OH)(2)D(3), supporting the currently accepted mechanism of 1,25-(OH)(2)D(3) induced transcellular calcium transport. However, a 1,25-(OH)(2)D(3) suppression of several intra-/intercellular matrix modeling proteins such as sodium/potassium ATPase, claudin 3, aquaporin 8, cadherin 17, and RhoA suggests a vitamin D regulation of tight junction permeability and paracellular calcium transport. Several other genes related to the immune system and angiogenesis whose expression was changed in response to 1,25-(OH)(2)D(3) provided evidence for an immunomodulatory and anti-angiogenic role of 1,25-(OH)(2)D(3).  相似文献   

16.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is anti-apoptotic in human keratinocytes, melanocytes and fibroblasts after ultraviolet (UV)-exposure. To date, there is no published data on the effects of 1,25(OH)(2)D(3) or its analogs on DNA damage in irradiated skin cells. In these skin cells, 24h pre-treatment with 1,25(OH)(2)D(3) dose-dependently (10(-12) to 10(-8)M) decreased CPD damage by up to 60%. This photoprotective effect was also seen if the 1,25(OH)(2)D(3) was added immediately after irradiation and was mimicked by QW-1624F2-2 (QW), a low-calcemic 1beta-hydroxymethyl-3-epi-16-ene-24,24-difluoro-26,27-bis homo hybrid analog. The well-studied low calcemic, rapid acting agonist analogs 1alpha,25(OH)(2)lumisterol(3) (JN) and 1alpha,25(OH)(2)-7-dehydrocholesterol (JM) also protected skin cells from UV-induced cell loss and CPD damage to an extent comparable with that of 1,25(OH)(2)D(3). In contrast, the rapid response antagonist analog 1beta,25(OH)(2)D(3) (HL) completely abolished the photoprotective effects (reduced cell loss and reduced CPD damage) produced by treatment with 1,25(OH)(2)D(3), JN, JM and QW. Evidence for involvement of the nitric oxide pathway in the protection from CPD damage by 1,25(OH)(2)D(3) was obtained. These data provide further evidence for a role of the vitamin D pathway in the intrinsic skin defenses against UV damage. The data also support the hypothesis that the photoprotective effects of 1,25(OH)(2)D(3) are mediated via the rapid response pathway(s).  相似文献   

17.
Cellular calcium has been implicated in induction of apoptosis. We have shown that 1,25(OH)(2)D(3)-induced apoptosis is associated with a sustained increase in concentration of intracellular Ca(2+) ([Ca(2+)](i)) resulting from depletion of the endoplasmic reticulum (ER) Ca(2+) stores and activation of the voltage-insensitive Ca(2+) entry pathway [1,25-Dihydroxyvitamin D(3), intracellular Ca(2+) and apoptosis in breast cancer cells, in: A.W. Norman, R. Bouillon, M. Thomasset (Eds.), Vitamin D: Chemistry, Biology and Clinical Applications of the Steroid Hormone, University of California, Riverside, 1997, pp. 473-474; Vitamin D and intracellular calcium, in: P. Quinn, V. Kagan (Eds.), Subcellular Biochemistry: Fat-Soluble Vitamins, Plenum Press, New York, 1998, pp. 271-297; 1,25-Dihydroxyvitamin D(3) and calcium signaling, in: A.W. Norman, R. Bouillon, M. Thomasset (Eds.), Vitamin D Endocrine System: Structural, Biological, Genetic and Clinical Aspects, University of California, Riverside, 2000, pp. 715-718; 1,25-Dihydroxyvitamin D(3) triggers calcium-mediated apoptosis in breast cancer cells, in: A.W. Norman, R. Bouillon, M. Thomasset (Eds.), Vitamin D Endocrine System: Structural, Biological, Genetic and Clinical Aspects, University of California, Riverside, 2000, pp. 399-402; Endocrine 9 (1998) 321]. This study was undertaken to investigate mechanism of 1,25(OH)(2)D(3)-induced apoptosis in breast cancer cells and compare effects of the hormone on Ca(2+) and apoptosis in cancer and normal human mammary epithelial cells. The treatment of MCF-7 breast cancer cells with 1,25(OH)(2)D(3) induced a sustained increase in [Ca(2+)](i) and activated the Ca(2+)-dependent proapoptotic proteases, micro-calpain and caspase-12, as evaluated with antibodies to active (cleaved) forms of the enzymes and the calpain substrate. The selective inhibition of Ca(2+) binding sites of micro-calpain decreased apoptotic indices in the 1,25(OH)(2)D(3)-treated cells. 1,25(OH)(2)D(3) did not induce apoptosis in normal human mammary epithelial cells (HMECs), as evaluated by DNA fragmentation (TUNEL), loss of the plasma membrane asymmetry (Annexin V assay) and morphological criteria. In these cells, 1,25(OH)(2)D(3) triggered a transient Ca(2+) response, which was not accompanied by the calpain and caspase activation. HMEC, but not MCF-7 cells expressed the Ca(2+) binding protein calbindin-D(28k) and buffered Ca(2+) increases induced by a Ca(2+) ionophore ionomycin. In conclusion, we have identified the novel apoptotic pathway in breast carcinoma cells treated with 1,25(OH)(2)D(3): increase in [Ca(2+)](i) -->micro-calpain activation --> caspase-12 activation --> apoptosis. Our findings also imply that differences of Ca(2+) regulatory mechanisms in breast cancer versus normal mammary epithelial cells underlay resistance of normal cells and susceptibility of cancer cells to 1,25(OH)(2)D(3)-induced Ca(2+)-mediated apoptosis.  相似文献   

18.
19.
Regulation of muscle cell Ca(2+) metabolism by 1, 25-dihydroxy-vitamin D(3) [1,25(OH)(2)D(3)] is mediated by the classic nuclear mechanism and a fast, nongenomic mode of action that activates signal transduction pathways. The role of individual protein kinase C (PKC) isoforms in the regulation of intracellular Ca(2+) levels ([Ca(2+)](i)) by the hormone was investigated in cultured proliferating (myoblasts) and differentiated (myotubes) chick skeletal muscle cells. 1,25(OH)(2)D(3) (10(-9) M) induced a rapid (30- to 60-s) and sustained (>5-min) increase in [Ca(2+)](i) which was markedly higher in myotubes than in myoblasts. The effect was suppressed by the PKC inhibitor calphostin C. In differentiated cells, PKC activity increased in the particulate fraction and decreased in cytosol to a greater extent than in proliferating cells after 5-min treatment with 1,25(OH)(2)D(3). By Western blot analysis, these changes were correlated to translocation of the PKC alpha isoform from cytosol to the particulate fraction, which was more pronounced in myotubes than in myoblasts. Specific inhibition of PKC alpha activity using antibodies against this isoform decreased the 1, 25(OH)(2)D(3)-induced [Ca(2+)](i) sustained response associated with Ca(2+) influx through voltage-dependent calcium channels. Neomycin, a phospholipase C (PLC) inhibitor, blocked its effects on [Ca(2+)](i), PKC activity, and translocation of PKC alpha. Exposure of myotubes to 1,2-dioleyl-rac-glycerol (1,2-diolein), also increased [Ca(2+)](i), PKC activity, and the amount of PKC alpha associated with the particulate fraction. Changes in [Ca(2+)](i) induced by diolein were inhibited by calphostin C and nifedipine. The results indicate that PKC alpha activation via PLC-catalyzed phosphoinositide hydrolysis is part of the mechanism by which 1, 25(OH)(2)D(3) regulates muscle intracellular Ca(2+) through modulation of the Ca(2+) influx pathway of the Ca(2+) response to the sterol.  相似文献   

20.
Carp (Cyprinus carpio), a freshwater fish that lives in a low-calcium environment, and Atlantic cod (Gadus morhua), a seawater fish that lives in a high-calcium environment, were studied for the presence of a novel membrane binding protein ("receptor") for the vitamin D metabolite, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Basal lateral membranes from enterocytes of either species were prepared and analyzed for specific saturable binding. Membranes from carp revealed a dissociation constant of 1.23 nM with a maximal binding capacity of 212 fmol/mg protein. In comparison, membranes from Atlantic cod enterocytes revealed very low and nonsignificant levels of specific binding. The [(3)H]1,25(OH)(2)D(3) binding activity in carp was further characterized for protein dependence, detergent extractability, and competition for binding with the metabolites 25(OH)D(3) and 24R,25(OH)(2)D(3). Finally, introduction of 1,25(OH)(2)D(3) to isolated carp enterocytes enhanced protein kinase C activity within 5 min, whereas intracellular Ca(2+) concentrations were unaffected by a range of 1,25(OH)(2)D(3) concentrations, as judged by fura 2 fluorescence. Thus the binding moiety may be a putative plasma membrane receptor for vitamin D, because it is functionally coupled to at least one signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号