首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical stimuli are transduced into intracellular signals in lung alveolar epithelial cells (AEC). We studied whether mitogen-activated protein kinase (MAPK) pathways are activated during cyclic stretch of AEC. Cyclic stretch induced a rapid (within 5 min) increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in AEC. The inhibition of Na(+), L-type Ca(2+) and stretch-activated ion channels with amiloride, nifedipine, and gadolinium did not prevent the stretch-induced ERK1/2 activation. The inhibition of Grb2-SOS interaction with an SH3 binding sequence peptide, Ras with a farnesyl transferase inhibitor, and Raf-1 with forskolin did not affect the stretch-induced ERK1/2 phosphorylation. Moreover, cyclic stretch did not increase Ras activity, suggesting that stretch-induced ERK1/2 activation is independent of the classical receptor tyrosine kinase-MAPK pathway. Pertussis toxin and two specific epidermal growth factor receptor (EGFR) inhibitors (AG-1478 and PD-153035) prevented the stretch-induced ERK1/2 activation. Accordingly, in primary AEC, cyclic stretch activates ERK1/2 via G proteins and EGFR, in Na(+) and Ca(2+) influxes and Grb2-SOS-, Ras-, and Raf-1-independent pathways.  相似文献   

2.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation.  相似文献   

3.
Exposure of MDA-MB-468 cells to ionizing radiation (IR) caused biphasic activation of ERK as indicated by its phosphorylation at Thr202/Tyr204. Specific epidermal growth factor receptor (EGFR) inhibitor AG1478 and specific Src inhibitor PP2 inhibited IR-induced ERK1/2 activation but phosphatidylinositol-3 kinase inhibitor wortmannin did not. IR caused EGFR tyrosine phosphorylation, whereas it did not induce EGFR autophosphorylation at Tyr992, Tyr1045, and Tyr1068 or Src-dependent EGFR phosphorylation at Tyr845. SHP-2, which positively regulates EGFR/Ras/ERK signaling cascade, became activated by IR as indicated by its phosphorylation at Tyr542. This activation was inhibited by PP2 not by AG1478, which suggests Src-dependent activation of SHP-2. Src and PTPalpha, which positively regulates Src, became activated as indicated by phosphorylation at Tyr416 and Tyr789, respectively. These data suggest that IR-induced ERK1/2 activation involves EGFR through a Src-dependent pathway that is distinct from EGFR ligand activation.  相似文献   

4.
Mechanical stress is known to modulate fundamental events such as cell life and death. Mechanical stretch in particular has been identified as a positive regulator of proliferation in skin keratinocytes and other cell systems. In the present study it was investigated whether antiapoptotic signaling is also stimulated by mechanical stretch. It was demonstrated that mechanical stretch rapidly induced the phosphorylation of the proto-oncogene protein kinase B (PKB)/Akt at both phosphorylation sites (serine 473/threonine 308) in different epithelial cells (HaCaT, A-431, and human embryonic kidney-293). Blocking of phosphoinositide 3-OH kinase by selective inhibitors (LY-294002 and wortmannin) abrogated the stretch-induced PKB/Akt phosphorylation. Furthermore mechanical stretch stimulated phosphorylation of epidermal growth factor receptor (EGFR) and the formation of EGFR membrane clusters. Functional blocking of EGFR phosphorylation by either selective inhibitors (AG1478 and PD168393) or dominant-negative expression suppressed stretch-induced PKB/Akt phosphorylation. Finally, the angiotensin II type 1 receptor (AT1-R) was shown to induce positive transactivation of EGFR in response to cell stretch. These findings define a novel signaling pathway of mechanical stretch, namely the activation of PKB/Akt by transactivation of EGFR via angiotensin II type 1 receptor. Evidence is provided that stretch-induced activation of PKB/Akt protects cells against induced apoptosis.  相似文献   

5.
Increased intraglomerular pressure is an important hemodynamic determinant of glomerulosclerosis, and can be modelled in vitro by exposing mesangial cells (MC) to cyclic mechanical stretch. We have previously shown that the GTPase RhoA mediates stretch-induced fibronectin production. Here we investigate the role of the RhoGEF Vav2 in the activation of RhoA by stretch. Primary rat MC were exposed to 1 Hz cyclic stretch, previously shown to induce maximal RhoA activation at 1 min. Total Vav2 tyrosine phosphorylation and specific phosphorylation on Y172, required for activation, were increased by 1 min of stretch. Overexpression of dominant-negative Vav2 Y172/159F in COS-1 cells or downregulation of Vav2 by siRNA in MC prevented stretch-induced RhoA activation. Vav2 is known to be activated in response to growth factors, and we have previously shown the epidermal growth factor receptor (EGFR) to be transactivated by stretch in MC. Both Vav2 Y172 phosphorylation and RhoA activation were blocked by the EGFR inhibitor AG1478 and prevented in MC overexpressing kinase inactive EGFR. Stretch led to physical association between the EGFR and Vav2, and this was dependent on EGFR activation. EGFR Y992 phosphorylation, required for growth factor-induced Vav2 phosphorylation, was also induced by stretch. Activation of both Src and PI3K were necessary upstream mediators of stretch-induced Vav2 Y172 phosphorylation and RhoA activation. In summary, stretch-induced RhoA activation is dependent on transactivation of the EGFR and activation of the RhoGEF Vav2. Src and PI3K are both required upstream of Vav2 and RhoA activation.  相似文献   

6.
We have used quinazoline inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase to study the link between EGFR signaling and G(1) to S traverse. Treatment of A431 and MDA-468 human tumor cells with 0.1-10 microM AG-1478 inhibited basal and ligand-stimulated EGFR phosphorylation without a decrease in receptor content, EGF-binding sites, or binding affinity. Incubation of A431 cells with 0.1-1 microM AG-1517 abrogated (125)I-EGF internalization. Both AG-1478 and AG-1517 markedly inhibited A431 and MDA-468 colony formation in soft agarose at concentrations between 0.01 and 1 microM. Daily injections of AG-1478 at 50 mg/kg delayed A431 tumor formation in athymic nude mice. A transient exposure of A431 cells to AG-1478 resulted in a dose-dependent up-regulation of the cyclin-dependent kinase inhibitor p27, down-regulation of cyclin D1 and of active MAPK, and hypophosphorylation of the retinoblastoma protein (Rb). These changes were temporally associated with recruitment of tumor cells in G(1) phase and a marked reduction of the proportion of cells in S phase. Upon removal of the kinase inhibitor, EGFR and Rb phosphorylation and the levels of cyclin D1 protein were quickly restored, but the cells did not reenter S phase until p27 protein levels were decreased. Phosphorothioate p27 oligonucleotides decreased p27 protein in A431 cells and abrogated the quinazoline-mediated G(1) arrest. Treatment of A431 cells with PD 098509, a synthetic inhibitor of MEK1, inhibited MAPK activity without inducing G(1) arrest or increasing the levels of p27. However, treatment with LY 294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited basal Akt activity, up-regulated p27, and recruited cells in G(1). These data suggest that p27 is required for the growth arrest that follows interruption of the EGFR kinase in receptor-overexpressing cells. In addition, the G(1) arrest and up-regulation of p27 resulting from EGFR blockade are not due to the interruption of MAPK, but to the interruption of constitutively active PI3K function.  相似文献   

7.
The role of epidermal growth factor receptor (EGFR) tyrosine kinase and its downstream targets in the regulation of the transition from the G0/G1 phase into DNA synthesis in response to ANG II has not been previously investigated in intestinal epithelial IEC-18 cells. ANG II induced a rapid and striking EGFR tyrosine phosphorylation, which was prevented by selective inhibitors of EGFR tyrosine kinase activity (e.g., AG-1478) or by broad-spectrum matrix metalloproteinase (MMP) inhibitor GM-6001. Pretreatment of these cells with either AG-1478 or GM-6001 reduced ANG II-stimulated DNA synthesis by approximately 50%. To elucidate the downstream targets of EGFR, we demonstrated that ANG II stimulated phosphorylation of Akt at Ser473, mTOR at Ser2448, p70S6K1 at Thr389, and S6 ribosomal protein at Ser(235/236). Pretreatment with AG-1478 inhibited Akt, p70S6K1, and S6 ribosomal protein phosphorylation. Inhibition of phosphatidylinositol (PI)3-kinase with LY-294002 or mTOR/p70S6K1 with rapamycin reduced [3H]thymidine incorporation by 50%, i.e., to levels comparable to those achieved by addition of either AG-1478 or GM-6001. Utilizing Akt small-interfering RNA targeted to Akt1 and Akt2, Akt protein knockdown dramatically inhibited p70S6K1 and S6 ribosomal protein phosphorylation. In contrast, AG-1478 or Akt gene silencing exerted no detectable inhibitory effect on ANG II-induced extracellular signal-regulated kinase 1/2 phosphorylation in IEC-18 cells. Taken together, our results demonstrate that EGFR transactivation mediates ANG II-stimulated mitogenesis through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway in IEC-18 cells.  相似文献   

8.
Angiotensin (Ang) II stimulates vascular smooth muscle cell (VSMC) growth via activation of cytosolic phospholipase A2 (cPLA2), release of arachidonic acid (ArAc) and activation of mitogen-activated protein kinase (MAPK). The mechanism linking AT1 receptor stimulation of ArAc release with MAPK activation may involve transactivation of the epidermal growth factor receptor (EGFR). In this study, Ang II increased phosphorylation of the EGFR and MAPK in cultured VSMC and these effects were attenuated by the cPLA2 inhibitor arachidonyl trifluoromethyl ketone (AACOCF3), and restored by addition of ArAc. Ang II- or ArAc-induced phosphorylation of the EGFR and MAPK were abolished by the EGFR kinase inhibitor AG1478. Ang II or ArAc also stimulated VSMC growth that was blocked by AG1478 or the MAPK kinase (MEK) inhibitor PD98059. Thus, it appears that the cPLA2-dependent release of ArAc may provide a mechanism for the transactivation between the AT1 receptor and the EGFR signaling cascade.  相似文献   

9.
Evidence accumulated in recent years has revealed a potential role for reactive oxygen species (ROS) in the pathophysiology of cardiovascular diseases. However, the precise mechanisms by which ROS contribute to the development of these diseases are not fully established. Previous work from our laboratory has indicated that exogenous hydrogen peroxide (H2O2) activates several signaling protein kinases, such as extracellular signal-regulated kinase 1 and 2 (ERK1/2) and protein kinase B (PKB) in A10 vascular smooth muscle cells (VSMC). However, the upstream elements responsible for this activation remain unclear. Although a role for epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) in H2O2-induced ERK1/2 signaling has been suggested, the contribution of this PTK or other receptor or nonreceptor PTKs to PKB activation is not well defined in VSMC. In this study, we used pharmacological inhibitors to investigate the role of receptor and Src-family-PTKs in H2O2-induced PKB phosphorylation. AG1478, a specific inhibitor of EGFR, failed to attenuate the H2O2-induced increase in PKB Ser473 phosphorylation, whereas AG1024, an inhibitor of insulin-like growth factor type1 receptor (IGF-1R)-PTK, almost completely blocked this response. H2O2 treatment also enhanced tyrosine phosphorylation of the IGF-1Rbeta subunit, which was significantly inhibited by AG1024 pretreatment of cells. Furthermore, pharmacological inhibition of Src by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazole(3,4-d) pyrimidine) decreased PKB phosphorylation. Moreover, H2O2-induced PKB phosphorylation was associated with increased tyrosine phosphorylation of c-Src and Pyk2 in an AG1024- and PP2-inhibitable manner. In conclusion, these data provide evidence of the contribution of IGF-1R-PTK in initiating H2O2-evoked PKB phosphorylation in A10 VSMC, with an intermediary role for c-Src and Pyk2 in this process.  相似文献   

10.
Our previous studies indicated that opioid-induced cardioprotection occurs via activation of mitochondrial ATP-sensitive K(+) (K(ATP)) channels. However, other elements of the Met(5)-enkephalin (ME) cardioprotection pathway are not fully characterized. In the present study, we investigated the role of tyrosine kinase, MAPK, and phosphatidylinositol 3-kinase (PI3K) signaling in ME-induced protection. Ca(2+)-tolerant, adult rabbit cardiomyocytes were isolated by collagenase digestion and subjected to simulated ischemia for 180 min. ME was administered 15 min before the 180 min of simulated ischemia; blockers were administered 15 min before ME. Cell death was assessed by trypan blue as a function of time. The epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 (250 nM) blocked ME-induced protection, but the inactive analog AG-9 (100 microM) did not. Treatment with herbimycin (1 microM) completely eliminated ME-induced protection. To verify that ME activates EGFR and to determine the involvement of Src, Western blotting of EGFR was performed after ME administration with and without herbimycin A. ME resulted in herbimycin-sensitive robust phosphorylation of EGFR at Tyr(992) and Tyr(1068). Administration of the selective MAPK inhibitor PD-98059 (10 nM) and the specific MEK1/2 inhibitor U-0126 (10 microM) also inhibited ME-induced cardioprotection. ME-induced ERK1/2 phosphorylation was significantly reduced by PD-98059, the EGFR kinase inhibitor PD-153035 (10 microM), and chelerythrine (2 microM). The PI3K inhibitor LY-294002 (20 microM) abrogated ME-induced protection, and ME-induced Akt phosphorylation at Ser(473) was suppressed by LY-294002, PD-153035, and chelerythrine. We conclude that ME-induced cardioprotection is mediated via Src-dependent EGFR transactivation and activation of the PI3K and MAPK pathways.  相似文献   

11.
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium (Cao2+). Rat-1 fibroblasts have been shown to proliferate and increase ERK activity in response to elevation of [Ca2+]o, and these responses are dependent on functional CaR expression. In this report, we examined the role of cross-talk between the CaR and the epidermal growth factor receptor (EGFR) in mediating these responses in Rat-1 cells. This report shows that AG1478, a specific inhibitor of the EGFR kinase, significantly inhibits the increase in proliferation induced by elevated Cao2+. Furthermore, we show that AG1478 acts downstream or separately from G protein subunit activation of phospholipase C. AG1478 significantly inhibits Cao2+-stimulated ERK phosphorylation and in vitro kinase activity. A similar inhibition of ERK phosphorylation was observed in response to the inhibitor AG494. In addition, treatment with inhibitors of metalloproteases involved in shedding of membrane anchored EGF family ligands substantially inhibited the increase in ERK activation in response to elevated Cao2+. This is consistent with the known expression of TGFalpha by Rat-1 cells. These results indicate that EGFR transactivation is an important component of the CaR-mediated response to increased Cao2+ in Rat-1 fibroblasts and most likely involves CaR-mediated induction of regulated proteolysis and ligand shedding.  相似文献   

12.
Cyclic stretch of alveolar epithelial cells (AEC) can alter normal lung barrier function. Fibroblast growth factor-10 (FGF-10), an alveolar type II cell mitogen that is critical for lung development, may have a role in promoting AEC repair. We studied whether cyclic stretch induces AEC DNA damage and whether FGF-10 would be protective. Cyclic stretch (30 min of 30% strain amplitude and 30 cycles/min) caused AEC DNA strand break formation, as assessed by alkaline unwinding technique and DNA nucleosomal fragmentation. Pretreatment of AEC with FGF-10 (10 ng/ml) blocked stretch-induced DNA strand break formation and DNA fragmentation. FGF-10 activated AEC mitogen-activated protein kinase (MAPK), and MAPK inhibitors prevented FGF-10-induced AEC MAPK activation and abolished the protective effects of FGF-10 against stretch-induced DNA damage. In addition, a Grb2-SOS inhibitor (SH(3)b-p peptide), a RAS inhibitor (farnesyl transferase inhibitor 277), and a RAF-1 inhibitor (forskolin) each prevented FGF-10-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in AEC. Moreover, N17-A549 cells that express a RAS dominant/negative protein prevented the FGF-10-induced ERK1/2 phosphorylation and RAS activation in AEC. We conclude that cyclic stretch causes AEC DNA damage and that FGF-10 attenuates these effects by mechanisms involving MAPK activation via the Grb2-SOS/Ras/RAF-1/ERK1/2 pathway.  相似文献   

13.
Chronic stimulation of the β-AR (adrenergic receptor) promotes apoptosis of cardiomyocytes, which is implicated in cardiac dysfunction. β1-AR and β2-AR are the main subtypes of β-AR that exert distinct effects on the survival of cardiomyocytes. To clarify the physiological roles of β1-AR and β2-AR in cardiomyocytes, the effects of β1-AR or β2-AR knockdown on the survival of H9c2 cardiomyocytes was investigated. Knockdown of β2-AR, but not β1-AR, suppressed the phosphorylation of EGFR (epidermal growth factor receptor) and PDGFR (platelet-derived growth factor receptor) induced by ISO (isoprenaline). The EGFR inhibitor, AG1478, attenuated ERK (extracellular-signal-regulated kinase) activation and partially decreased cell survival. Pretreatment with AG1296, a PDGFR inhibitor, abolished ISO-induced Akt (also known as protein kinase B) phosphorylation and led to a decrease in cell viability. In addition, the Src tyrosine kinase inhibitor, PP2, blocked ISO-mediated both Akt and ERK activation and heavily suppressed viability. Accordingly, in primary neonatal rat cardiomyocytes, the β2-AR inhibitor, but not the β1-AR inhibitor, abrogated the transactivation of EGFR and PDGFR, which was respectively related to Akt and ERK activation. The results show that β2-AR transactivates PDGFR and EGFR, thereby promoting survival of cardiomyocytes.  相似文献   

14.
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.  相似文献   

15.
Activation of ERK-1 and -2 by H(2)O(2) in a variety of cell types requires epidermal growth factor receptor (EGFR) phosphorylation. In this study, we investigated the activation of ERK by ONOO(-) in cultured rat lung myofibroblasts. Western blot analysis using anti-phospho-ERK antibodies along with an ERK kinase assay using the phosphorylated heat- and acid-stable protein (PHAS-1) substrate demonstrated that ERK activation peaked within 15 min after ONOO(-) treatment and was maximally activated with 100 micrometer ONOO(-). Activation of ERK by ONOO(-) and H(2)O(2) was blocked by the antioxidant N-acetyl-l-cysteine. Catalase blocked ERK activation by H(2)O(2), but not by ONOO(-), demonstrating that the effect of ONOO(-) was not due to the generation of H(2)O(2). Both H(2)O(2) and ONOO(-) induced phosphorylation of EGFR in Western blot experiments using an anti-phospho-EGFR antibody. However, the EGFR tyrosine kinase inhibitor AG1478 abolished ERK activation by H(2)O(2), but not by ONOO(-). Both H(2)O(2) and ONOO(-) activated Raf-1. However, the Raf inhibitor forskolin blocked ERK activation by H(2)O(2), but not by ONOO(-). The MEK inhibitor PD98059 inhibited ERK activation by both H(2)O(2) and ONOO(-). Moreover, ONOO(-) or H(2)O(2) caused a cytotoxic response of myofibroblasts that was prevented by preincubation with PD98059. In a cell-free kinase assay, ONOO(-) (but not H(2)O(2)) induced autophosphorylation and nitration of a glutathione S-transferase-MEK-1 fusion protein. Collectively, these data indicate that ONOO(-) activates EGFR and Raf-1, but these signaling intermediates are not required for ONOO(-)-induced ERK activation. However, MEK-1 activation is required for ONOO(-)-induced ERK activation in myofibroblasts. In contrast, H(2)O(2)-induced ERK activation is dependent on EGFR activation, which then leads to downstream Raf-1 and MEK-1 activation.  相似文献   

16.
We studied the effects of ANG II on extracellular signal-regulated kinase (ERK)1/2 phosphorylation in rat pituitary cells. ANG II increased ERK phosphorylation in a time- and concentration-dependent way. Maximum effect was obtained at 5 min at a concentration of 10-100 nM. The effect of 100 nM ANG II was blocked by the AT1 antagonist DUP-753, by the phospholipase C (PLC) inhibitor U-73122, and by the MAPK kinase (MEK) antagonist PD-98059. The ANG II-induced increase in phosphorylated (p)ERK was insensitive to pertussis toxin blockade and PKC depletion or inhibition. The effect was also abrogated by chelating intracellular calcium with BAPTA-AM or TMB-8 by depleting intracellular calcium stores with a 30-min pretreatment with EGTA and by pretreatment with herbimycin A and PP1, two c-Src tyrosine kinase inhibitors. It was attenuated by AG-1478, an inhibitor of epidermal growth factor receptor (EGFR) activation. Therefore, in the rat pituitary, the increase of pERK is a Gq- and PLC-dependent process, which involves an increase in intracellular calcium and activation of a c-Src tyrosine kinase, transactivation of the EGFR, and the activation of MEK. Finally, the response of ERK activation by ANG II is altered in hyperplastic pituitary cells, in which calcium mobilization evoked by ANG II is also modified.  相似文献   

17.
We investigated the role of receptor tyrosine kinases in Ang II-stimulated generation of reactive oxygen species (ROS) and assessed whether MAP kinase signaling by Ang II is mediated via redox-sensitive pathways. Production of ROS and activation of NADPH oxidase were determined by DCFDA (dichlorodihydrofluorescein diacetate; 2 micromol/L) fluorescence and lucigenin (5 micromol/L) chemiluminescence, respectively, in rat vascular smooth muscle cells (VSMC). Phosphorylation of ERK1/2, p38MAP kinase and ERK5 was determined by immunoblotting. The role of insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) was assessed with the antagonists AG1024 and AG1478, respectively. ROS bioavailability was manipulated with Tiron (10(-5) mol/L), an intracellular scavenger, and diphenylene iodinium (DPI; 10(-6) mol/L), an NADPH oxidase inhibitor. Ang II stimulated NADPH oxidase activity and dose-dependently increased ROS production (p < 0.05). These actions were reduced by AG1024 and AG1478. Ang II-induced ERK1/2 phosphorylation (276% of control) was decreased by AG1478 and AG1024. Neither DPI nor tiron influenced Ang II-stimulated ERK1/2 activity. Ang II increased phosphorylation of p38 MAP kinase (204% of control) and ERK5 (278% of control). These effects were reduced by AG1024 and AG1478 and almost abolished by DPI and tiron. Thus Ang II stimulates production of NADPH-inducible ROS partially through transactivation of IGF-1R and EGFR. Inhibition of receptor tyrosine kinases and reduced ROS bioavaliability attenuated Ang II-induced phosphorylation of p38 MAP kinase and ERK5, but not of ERK1/2. These findings suggest that Ang II activates p38MAP kinase and ERK5 via redox-dependent cascades that are regulated by IGF-1R and EGFR transactivation. ERK1/2 regulation by Ang II is via redox-insensitive pathways.  相似文献   

18.
Adenosine triphosphate (ATP) is coreleased with catecholamines from adrenal medullary chromaffin cells in response to sympathetic nervous system stimulation and may regulate these cells in an autocrine or paracrine manner. Increases in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation were observed in response to ATP stimulation of bovine chromaffin cells. The signaling pathway involved in ATP-mediated ERK1/2 phosphorylation was investigated via Western blot analysis. ATP and uridine 5′-triphosphate (UTP) increased ERK1/2 phosphorylation potently, peaking between 5 and 15 min. The mitogen-activated protein kinase (MAPK/ERK)-activating kinase (MEK) inhibitor PD98059 blocked this response. UTP, which is selective for G-protein-coupled P2Y receptors, was the most potent agonist among several nucleotides tested. Adenosine 5′-O-(3-thio) triphosphate (ATPγS) and ATP were also potent agonists, characteristic of the P2Y2 or P2Y4 receptor subtypes, whereas agonists selective for P2X receptors or other P2Y receptor subtypes were weakly effective. The receptor involved was further characterized by the nonspecific P2 antagonists suramin and reactive blue 2, which each partially inhibited ATP-mediated ERK1/2 phosphorylation. Inhibitors of protein kinase C (PKC), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phosphoinositide-3 kinase (PI3K) had no effect on ATP-mediated ERK1/2 phosphorylation. The Src inhibitor PP2, epidermal growth factor receptor (EGFR) inhibitor AG1478, and metalloproteinase inhibitor GM6001 decreased ATP-mediated ERK1/2 phosphorylation. These results suggest nucleotide-mediated ERK1/2 phosphorylation is mediated by a P2Y2 or P2Y4 receptor, which stimulates metalloproteinase-dependent transactivation of the EGFR.  相似文献   

19.
We previously showed that stimulation of muscarinic acetylcholine receptors (mAChR) by carbachol (Cch) caused a time- and dose-dependent increase of mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK) phosphorylation in thyroid epithelial cells. In this study, we demonstrated that mAChR stimulation also induced a time-dependent increase in the tyrosine phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), which was prevented by pretreatment of thyroid epithelial cells with the specific Src-family tyrosine kinase inhibitor PP2. Besides, phosphorylation of Pyk2 was attenuated by chelation of extracellular Ca(2+) or inhibition of phospholipase C (PLC), and was evoked by thapsigargin, a specific microsomal Ca(2+)-ATPase inhibitor. Incorporation of Pyk2 antisense oligonucleotides in thyroid epithelial cells to down-regulated Pyk2 expression or pretreatment of cells with the Ca(2+)/calmodulin protein kinase II (CaM kinase II) inhibitor KN-62 significantly reduced Cch-induced MAPK/ERK phosphorylation. In addition, Cch-induced MAPK/ERK phosphorylation was partially inhibited by LY294002 and wortmannin, two selective inhibitors of phosphatidylinositol 3-kinase (PI3K), tyrphostin AG1478, a specific inhibitor of epidermal growth factor receptor (EGFR) kinase, and (-)-perillic acid, a post-translational inhibitor of small G-proteins isoprenylation. Taken together, our data suggest that Pyk2, CaM kinase II and Src-family tyrosine kinases are key molecules for the activation of MAPK/ERK cascade through the EGFR/Ras/Raf pathway in thyroid epithelial cells in response to mAChR stimulation.  相似文献   

20.
It has been proposed that mechanically induced tension is the critical factor in the induction of muscle hypertrophy. However, the molecular mechanisms involved in this process are still under investigation. In the present study, the effect of mechanical stretch on intracellular signaling for protein translation initiation and elongation was studied in C2C12 myoblasts. Cells were grown on a silicone elastomer chamber and subjected to 30-min of 5 or 15% constant static or cyclic (60 cycles/min) uniaxial stretch. Western blot analyses revealed that p70 S6 kinase (p70S6K) and eukaryotic elongation factor 2 (eEF2), which are the markers for translation initiation and peptide chain elongation, respectively, were activated by both static and cyclic stretch. The magnitude of activation was greater in response to the 15% cyclic stretch. Cyclic stretch also increased the phosphorylation of MAP kinases (p38 MAPK, ERK1/2 and JNK). However, the pharmacological inhibition of MAP kinases did not block the stretch-induced activation of p70S6K and eEF2. An inhibitor of the mammalian target of rapamycin (mTOR) blocked the stretch-induced phosphorylation of p70S6K but did not affect the eEF2 activation. A broad-range tyrosine kinase inhibitor, genistein, blocked the stretch-induced activation of p70S6K and eEF2, whereas Src tyrosine kinase and Janus kinase (JAK) inhibitors did not. These results suggest that the stretch-induced activation of protein translation initiation and elongation in mouse myoblast cell lines is mediated by tyrosine kinase(s), except for Src kinase or JAK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号