首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice with surfactant protein (SP)-D deficiency have three to four times more surfactant lipids in air spaces and lung tissue than control mice. We measured multiple aspects of surfactant metabolism and function to identify abnormalities resulting from SP-D deficiency. Relative to saturated phosphatidylcholine (Sat PC), SP-A and SP-C were decreased in the alveolar surfactant and the large-aggregate surfactant fraction. Although large-aggregate surfactant from SP-D gene-targeted [(-/-)] mice converted to small-aggregate surfactant more rapidly, surface tension values were comparable to values for surfactant from SP-D wild-type [(+/+)] mice. (125)I-SP-D was cleared with a half-life of 7 h from SP-D(-/-) mice vs. 13 h in SP-D(+/+) mice. Although initial incorporation and secretion rates for [(3)H]palmitic acid and [(14)C]choline into Sat PC were similar, the labeled Sat PC was lost from the lungs of SP-D(+/+) mice more rapidly than from SP-D(-/-) mice. Clearance rates of intratracheal [(3)H]dipalmitoylphosphatidylcholine were used to estimate net clearances of Sat PC, which were approximately threefold higher for alveolar and total lung Sat PC in SP-D(-/-) mice than in SP-D(+/+) mice. SP-D deficiency results in multiple abnormalities in surfactant forms and metabolism that cannot be attributed to a single mechanism.  相似文献   

2.
Mice deficient in surfactant protein (SP) D develop increased surfactant pool sizes and dramatic changes in alveolar macrophages and type II cells. To test the hypothesis that granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates alveolar macrophage proliferation and activation and the type II cell hypertrophy seen in SP-D null mice, we bred SP-D and GM-CSF gene-targeted mice to obtain littermate double null, single null, and wild-type mice. Bronchoalveolar lavage levels of phospholipid, protein, SP-D, SP-A, and GM-CSF were measured from 1 to 4 mo. There was an approximately additive accumulation of phospholipid, total protein, and SP-A at each time point. Microscopy showed normal macrophage number and morphology in GM-CSF null mice, numerous giant foamy macrophages and hypertrophic type II cells in SP-D null mice, and large but not foamy macrophages and mostly normal type II cells in double null mice. These results suggest that the mechanisms underlying the alveolar surfactant accumulation in the SP-D-deficient and GM-CSF-deficient mice are different and that GM-CSF mediates some of the macrophage and type II cell changes seen in SP-D null mice.  相似文献   

3.
Tumor necrosis factor (TNF)-alpha is a major cytokine implicated in inducing acute and chronic lung injury, conditions associated with surfactant phosphatidylcholine (PtdCho) deficiency. Acutely, TNF-alpha decreases PtdCho synthesis but stimulates surfactant secretion. To investigate chronic effects of TNF-alpha, we investigated PtdCho metabolism in a murine transgenic model exhibiting lung-specific TNF-alpha overexpression. Compared with controls, TNF-alpha transgenic mice exhibited a discordant pattern of PtdCho metabolism, with a decrease in PtdCho and disaturated PtdCho (DSPtdCho) content in the lung, but increased levels in alveolar lavage. Transgenics had lower activities and increased immunoreactive levels of cytidylyltransferase (CCT), a key PtdCho biosynthetic enzyme. Ceramide, a CCT inhibitor, was elevated, and linoleic acid, a CCT activator, was decreased in transgenics. Radiolabeling studies revealed that alveolar reuptake of DSPtdCho was significantly decreased in transgenic mice. These observations suggest that chronic expression of TNF-alpha results in a complex pattern of PtdCho metabolism where elevated lavage PtdCho may originate from alveolar inflammatory cells, decreased surfactant reuptake, or altered surfactant secretion. Reduced parenchymal PtdCho synthesis appears to be attributed to CCT enzyme that is physiologically inactivated by ceramide or by diminished availability of activating lipids.  相似文献   

4.
Surfactant protein D (SP-D) and serum conglutinin are closely related members of the collectin family of host defense lectins. Although normally synthesized at different anatomic sites, both proteins participate in the innate immune response to microbial challenge. To discern the roles of specific domains in the function of SP-D in vivo, a fusion protein (SP-D/Cong(neck+CRD)) consisting of the NH(2)-terminal and collagenous domains of rat SP-D (rSP-D) and the neck and carbohydrate recognition domains (CRDs) of bovine conglutinin (Cong) was expressed in the respiratory epithelium of SP-D gene-targeted (SP-D(-/-)) mice. While SP-D/Cong(neck+CRD) fusion protein did not affect lung morphology and surfactant phospholipid levels in the lungs of wild type mice, the chimeric protein substantially corrected the increased lung phospholipids in SP-D(-/-) mice. The SP-D/Cong(neck+CRD) fusion protein also completely corrected defects in influenza A clearance and inhibited the exaggerated inflammatory response that occurs following viral infection. However, the chimeric protein did not ameliorate the ongoing lung inflammation, enhanced metalloproteinase expression, and alveolar destruction that characterize this model of SP-D deficiency. By contrast, a single arm mutant (RrSP-D(Ser15,20)) partially restored antiviral activity but otherwise failed to rescue the deficient phenotype. Our findings directly implicate the CRDs of both SP-D and conglutinin in host defense in vivo. Our findings also strongly suggest that the molecular mechanisms underlying impaired pulmonary host defense and abnormal lipid metabolism are distinct from those that promote ongoing inflammation and the development of emphysema.  相似文献   

5.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid β-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD−/−) by gene targeting in embryonic stem (ES) cells. The MCAD−/− mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 °C with prior fasting. The sporadic cardiac lesions seen in MCAD−/− mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD−/− pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.  相似文献   

6.
7.
Yu Q  Chen WF 《生理科学进展》1997,28(2):113-118
早期T细胞的发育是一个受到多种分子精确调控的过程,基因打靶技术的建立和发展 内研究上述分子的作用提供了有效的手段。对TCR、CD3基因打靶小鼠的研究表明,CD44-CD25阶段是早期T细胞发育的重要调控点,在此发育阶段,由TCRβ、TCRα和CD3成分组成的pre-TCR复俣体的表达或其与未知配体的结合通过p56lck传递信号,介导CD44-CD25细胞的进一上发育,该复全体任何成分的缺失都将使T  相似文献   

8.
The importance of B cells in host resistance to, and recovery from, Cryptosporidium parvum infection was examined in gene-targeted B cell-deficient (muMT-/-) mice. Neonatal muMT-/- mice infected with C. parvum at 5 days of age completely cleared the infection by day 20 PI. The kinetics of infection and clearance were similar to those seen with age-matched C57BL/6 control mice. Furthermore, B cells were not required to clear existing C. parvum infection in adult mice. Reconstitution of persistently infected Rag-1-/- adult mice with spleen cells from muMT-/- donor mice resulted in significant reduction of infection, as in the results seen with spleen cells from C57BL6 donors. These findings indicate clearly that B cells are not essential for host resistance to, and recovery from, C. parvum infection in mice.  相似文献   

9.
Sun C  Qi R  Wang L  Yan J  Wang Y 《Molecular biology reports》2012,39(3):3179-3184
In the present study we have examined whether p38 mitogen activated protein kinase (p38 MAPK) signal pathway interacts with calcium signal on lipid accumulation in primary preadipocytes of mice. The primary preadipocytes were treated with p38 MAPK inhibitor SB203580, blockers and excitomotors of calcium channel for 24 h, respectively. Intracellular triglyceride (TG) content was measured by triglyceride kit and lipid accumulation was determined by Oil Red O staining. Meanwhile, the mRNA expressions of peroxisome proliferators-activated receptor gamma (PPARγ) gene, fatty acid synthetase (FAS) gene, lipoprotein lipase (LPL) gene, vitamin D receptor (VDR) gene and extracellular Ca2+-sensing receptor (CaSR) gene were analyzed with real-time PCR. The protein content and phosphorylation of VDR and p38 were tested with Western Blotting. The data showed that intracellular TG content and the mRNA expression levels of PPARγ, FAS, LPL in N group and L group as well as FAS, LPL in C group were increased significantly (P < 0.01) compared to the control. On the contrary, intracellular TG content and the mRNA expression levels of PPARγ, FAS in B group as well as intracellular TG content and PPARγ, FAS, LPL in SB group and B+SB group were decreased significantly (P < 0.01). VDR mRNA expression and protein content were decreased in B, C, and SB added groups (P < 0.01). In addition, p38 phosphorylation levels increased in N and L groups (P < 0.01) and decreased in SB added groups (P < 0.01). These findings suggest that p38 MAPK pathway through regulating VDR mRNA expression participates in mediation of calcium signal and affects calcium signal regulating lipid accumulation in mice preadipocytes through changing PPARγ, FAS and LPL mRNA expression. In addition, calcium signal have a feedback effect in phosphorylation of p38.  相似文献   

10.
11.

Background

Patients with asthma demonstrate circadian variations in the airway inflammation and lung function. Pinealectomy reduces the total inflammatory cell number in the asthmatic rat lung. We hypothesize that melatonin, a circadian rhythm regulator, may modulate the circadian inflammatory variations in asthma by stimulating the chemotaxins expression in the lung epithelial cell.

Methods

Lung epithelial cells (A549) were stimulated with melatonin in the presence or absence of TNF-α(100 ng/ml). RANTES (Regulated on Activation Normal T-cells Expressed and Secreted) and eotaxin expression were measured using ELISA and real-time RT-PCR, eosinophil chemotactic activity (ECA) released by A549 was measured by eosinophil chemotaxis assay.

Results

TNF-α increased the expression of RANTES (307.84 ± 33.56 versus 207.64 ± 31.27 pg/ml of control, p = 0.025) and eotaxin (108.97 ± 10.87 versus 54.00 ± 5.29 pg/ml of control, p = 0.041). Melatonin(10-10 to 10-6M) alone didn't change the expression of RNATES (204.97 ± 32.56 pg/ml) and eotaxin (55.28 ± 6.71 pg/ml). However, In the presence of TNF-α (100 ng/ml), melatonin promoted RANTES (410.88 ± 52.03, 483.60 ± 55.37, 559.92 ± 75.70, 688.42 ± 95.32, 766.39 ± 101.53 pg/ml, treated with 10-10, 10-9, 10-8, 10-7,10-6M melatonin, respectively) and eotaxin (151.95 ± 13.88, 238.79 ± 16.81, 361.62 ± 36.91, 393.66 ± 44.89, 494.34 ± 100.95 pg/ml, treated with 10-10, 10-9, 10-8, 10-7, 10-6M melatonin, respectively) expression in a dose dependent manner in A549 cells (compared with TNF-α alone, P < 0.05). The increased release of RANTES and eotaxin in A549 cells by above treatment were further confirmed by both real-time RT-PCR and the ECA assay.

Conclusion

Taken together, our results suggested that melatonin might synergize with pro-inflammatory cytokines to modulate the asthma airway inflammation through promoting the expression of chemotaxins in lung epithelial cell.  相似文献   

12.
Olfactory receptors are primarily expressed in nasal olfactory epithelium, but these receptors are also ectopically expressed in diverse tissues. In this study, we investigated the biological functions of Olfr43, a mouse homolog of human OR1A1, in cultured hepatocytes and mice to assess its functionality in lipid metabolism. Olfr43 was expressed in mouse hepatocytes, and Olfr43 activation by a known ligand, (−)-carvone, stimulated cAMP response element-binding protein (CREB) activity. In ligand-receptor binding studies using site-directed mutagenesis, (−)-carvone binding required two residues, M257 and Y258, in Olfr43. In the mouse study, oral administration of (−)-carvone for 5 weeks in high-fat diet-fed mice improved energy metabolism, including reductions in hepatic steatosis and adiposity, and improved glucose and insulin tolerance. In mouse livers and cultured mouse hepatocytes, Olfr43 activation simulated the CREB-hairy and enhancer of split 1 (HES1)-peroxisome proliferator-activated receptor (PPAR)-γ signaling axis, leading to a reduction in hepatic triglyceride accumulation in the mouse liver. Thus, long-term administration of (−)-carvone reduces hepatic steatosis. The knockdown of Olfr43 gene expression in cultured hepatocytes negated these effects of (−)-carvone. In conclusion, an ectopic olfactory receptor, hepatic Olfr43, regulates energy metabolism via the CREB-HES1-PPARγ signaling axis.  相似文献   

13.
14.
Disordered intestinal metabolism is highly correlated with atherosclerotic diseases. Resveratrol protects against atherosclerotic diseases. Accordingly, this study aims to discover novel intestinal proatherosclerotic metabolites and potential therapeutic targets related to the anti‐atherosclerotic effects of resveratrol. An untargeted metabolomics approach was employed to discover novel intestinal metabolic disturbances during atherosclerosis and resveratrol intervention. We found that multiple intestinal metabolic pathways were significantly disturbed during atherosclerosis and responsive to resveratrol intervention. Notably, resveratrol abolished intestinal fatty acid and monoglyceride accumulation in atherosclerotic mice. Meanwhile, oleate accumulation was one of the most prominent alterations in intestinal metabolism. Moreover, resveratrol attenuated oleate‐triggered accumulation of total cholesterol, esterified cholesterol and neutral lipids in mouse RAW 264.7 macrophages by activating ABC transporter A1/G1‐mediated cholesterol efflux through PPAR (peroxisome proliferator‐activated receptor) α/γ activation. Furthermore, we confirmed that PPARα and PPARγ activation by WY14643 and pioglitazone, respectively, alleviated oleate‐induced accumulation of total cholesterol, esterified cholesterol and neutral lipids by accelerating ABC transporter A1/G1‐mediated cholesterol efflux. This study provides the first evidence that resveratrol abolishes intestinal fatty acid and monoglyceride accumulation in atherosclerotic mice, and that resveratrol suppresses oleate‐induced accumulation of total cholesterol, esterified cholesterol and neutral lipids in macrophages by activating PPARα/γ signalling.  相似文献   

15.
Starvation induces many biochemical and histological changes in the heart; however, the molecular events underlying these changes have not been fully elucidated. To explore the molecular response of the heart to starvation, microarray analysis was performed together with biochemical and histological investigations. Serum free fatty acids increased twofold in both 16- and 48-h-fasted mice, and cardiac triglyceride content increased threefold and sixfold in 16- and 48-h-fasted mice, respectively. Electron microscopy showed numerous lipid droplets in hearts of 48-h-fasted mice, whereas fewer numbers of droplets were seen in hearts from 16-h-fasted mice. Expression of 11,000 cardiac genes was screened by microarrays. More than 50 and 150 known genes were detected by differential expression analysis after 16- and 48-h-fasts, respectively. Genes for fatty acid oxidation and gluconeogenesis were increased, and genes for glycolysis were decreased. Many other genes for metabolism, signaling/cell cycle, cytoskeleton, and tissue antigens were affected by fasting. These data provide a broad perspective of the molecular events occurring physiologically in the heart in response to starvation.  相似文献   

16.
Excessive lipid accumulation in macrophages plays an important role in the development of atherosclerosis. Recently, several studies have implied that resistin, an adipocytokine which is mainly expressed in human peripheral blood monocytes, may take part in the pathogenesis of atherosclerosis. In this study, we investigated the effects of resistin on lipid accumulation as well as oxLDL on resistin expression in human macrophages. Treatment of macrophages with oxLDL significantly increased resistin mRNA expression, whereas native LDL had no such effect. Resistin pre-treated macrophages contained more and larger lipid droplets stained by Nile red. Resistin increased the expression of CD36 at both mRNA and protein levels, without affecting those of class A macrophage scavenger receptor (SR-A). These results suggest that resistin promotes lipid accumulation in human macrophages through its upregulating CD36 cell surface expression. Also, it is suggested that resistin may act as a modulator for macrophage-to-foam cell transformation.  相似文献   

17.
JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.  相似文献   

18.
目的:观察低氧性肺动脉高压小鼠体内脂质代谢的变化,探讨脂质代谢异常在低氧性肺动脉高压发生发展中的意义。方法:SPF级雄性C57BL/6小鼠20只,随机分为2组(n=10):常氧组和低氧组。常压连续低氧3周(9%~11% O2,23 h/d)复制慢性低氧性肺动脉高压模型,测定小鼠右心室压(RVSP)和右心室与左心室加室间隔重量比,Elisa法检测血浆中总胆固醇(TC)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)的含量;real-time PCR法检测肝组织中3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGCR)、低密度脂蛋白受体(LDLR)、清道夫受体B1(SR-B1)、固醇调节元件结合因子2(SREBF2)等基因的表达。结果:低氧组小鼠RVSP、RV/(LV+S)显著高于常氧组(P<0.05),血浆中HDL含量及HDL/LDL比值较常氧组显著降低(P<0.05),肝组织中LDLR、SR-B1基因表达较常氧组显著下调(P<0.05);RVSP与HDL/LDL比值及LDLR、SR-B1基因表达呈显著负相关(P<0.05)。结论:脂质代谢异常参与小鼠低氧性肺动脉高压的形成。  相似文献   

19.
本试验用醋酸钙、p38丝裂原激活蛋白激酶(p38MAPK)抑制剂SB203580及钙通道阻滞剂和激动剂刺激小鼠前体脂肪细胞。通过实时定量PCR技术检测前体脂肪细胞分化标志基因和钙信号相关受体基因表达水平,用油红O染色提取法和Fura-2/AM荧光法测定胞内脂质蓄积情况及胞浆游离Ca2+浓度([Ca2+]i)变化,以探讨钙信号调节前体脂肪细胞分化的潜在机制。结果表明:钙通道阻滞剂和激动剂显著改变了脂蛋白脂酶(LPL),过氧化物增殖激活受体γ(PPARγ)、脂肪酸合成酶(FAS)的表达水平,且影响细胞内的脂质蓄积。与降低外钙摄入相比,降低内钙释放能促进前体脂肪细胞分化(P<0.01),而提高外钙摄入与提高内钙释放相比,提高外钙摄入显著抑制前体脂肪细胞分化(P<0.01)。SB203580可降低胞浆[Ca2+]i浓度,促进前体细胞分化和脂质蓄积(P<0.01)。但钙信号并未影响维生素D受体(VDR)和细胞外钙敏感受体(CaSR)的表达水平。提示钙信号可能通过p38MAPK通路影响前体脂肪细胞分化和脂质蓄积。  相似文献   

20.
C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice. Specifically, strains prone to radiation-induced pulmonary fibrosis (C57BL/6J, C57BL/10J) exhibit only half as much lung ACE and PLA activity as do strains resistant to fibrosis (CBA and C3H).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号