首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

2.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

3.
The vasodilation response to local cutaneous heating is nitric oxide (NO) dependent and blunted in postural tachycardia but reversed by angiotensin II (ANG II) type 1 receptor (AT(1)R) blockade. We tested the hypothesis that a localized infusion of ANG II attenuates vasodilation to local heating in healthy volunteers. We heated the skin of a calf to 42 degrees C and measured local blood flow to assess the percentage of maximum cutaneous vascular conductance (%CVC(max)) in eight healthy volunteers aged 19.5-25.5 years. Initially, two experiments were performed; in one, Ringer solution was perfused in three catheters, the response to heating was measured, 2 microg/l losartan, 10 mM nitro-l-arginine (NLA), or NLA + losartan was added to perfusate, and the heat response was remeasured; in another, 10 microM ANG II was given, the heat response was measured, losartan, NLA, or NLA + losartan was added to ANG II, and the heat response was reassessed. The heat response decreased with ANG II, particularly the plateau phase (47 +/- 5 vs. 84 +/- 3 %CVC(max)). Losartan increased baseline conductance in both experiments (from 8 +/- 1 to 20 +/- 2 and 12 +/- 1 to 24 +/- 3). Losartan increased the ANG II response (83 +/- 4 vs. 91 +/- 6 in Ringer). NLA decreased both angiotensin and Ringer responses (31 +/- 4 vs. 43 +/- 3). NLA + losartan blunted the Ringer response (48 +/- 2), but the ANG II response (74 +/- 5) increased. In a second set of experiments, we used dose responses to ANG II (0.1 nM to 10 microM) with and without NLA + losartan to confirm graded responses. Sodium ascorbate (10 mM) restored the ANG II-blunted heating plateau. NO synthase and AT(1)R inhibition cause an NO-independent angiotensin-mediated vasodilation with local heating. ANG II mediates the AT(1)R blunting of local heating, which is not exclusively NO dependent, and is improved by antioxidant supplementation.  相似文献   

4.
The cardiac "sympathetic afferent" reflex (CSAR) has been reported to increase sympathetic outflow and depress baroreflex function via a central angiotensin II (ANG II) mechanism. In the present study, we examined the role of ANG II type 1 (AT(1)) receptors in the nucleus tractus solitarii (NTS) in mediating the interaction between the CSAR and the baroreflex in anesthetized rats. We examined the effects of bilateral microinjection of AT(1) receptor antagonist losartan (100 pmol) into the NTS on baroreflex control of renal sympathetic nerve activity (RSNA) before and after CSAR activation by epicardial application of capsaicin (0.4 microg). Using single-unit extracellular recording, we further examined the effects of CSAR activation on the barosensitivity of barosensitive NTS neurons and the effects of intravenous losartan (2 mg/kg) on CSAR-induced changes in activity of NTS barosensitive neurons. Bilateral NTS microinjection of losartan significantly attenuated the increases in arterial pressure, heart rate, and RSNA evoked by capsaicin but also markedly (P < 0.01) reversed the CSAR-induced blunted baroreflex control of RSNA (Gain(max) from 1.65 +/- 0.10 to 2.22 +/- 0.11%/mmHg). In 17 of 24 (70.8%) NTS barosensitive neurons, CSAR activation significantly (P < 0.01) inhibited the baseline neuronal activity and attenuated the neuronal barosensitivity. In 11 NTS barosensitive neurons, intravenous losartan effectively (P < 0.01) normalized the decreased neuronal barosensitivity induced by CSAR activation. In conclusion, blockade of NTS AT(1) receptors improved the blunted baroreflex during CSAR activation, suggesting that the NTS plays an important role in processing the interaction between the baroreflex and the CSAR via an AT(1) receptor-dependent mechanism.  相似文献   

5.
Acute hypoxic pulmonary vasoconstriction (HPV) may be mediated by vasoactive peptides. We studied eight conscious, chronically tracheostomized dogs kept on a standardized dietary sodium intake. Normoxia (40 min) was followed by hypoxia (40 min, breathing 10% oxygen, arterial oxygen pressures 36 +/- 1 Torr) during both control (Con) and losartan experiments (Los; iv infusion of 100 microg. min-1. kg-1 losartan). During hypoxia, minute ventilation (by 0.9 l/min in Con, by 1.3 l/min in Los), cardiac output (by 0.36 l/min in Con, by 0.30 l/min in Los), heart rate (by 11 beats/min in Con, by 30 beats/min in Los), pulmonary artery pressure (by 9 mmHg in both protocols), and pulmonary vascular resistance (by 280 and 254 dyn. s. cm-5 in Con and Los, respectively) increased. Mean arterial pressure and systemic vascular resistance did not change. In Con, PRA decreased from 4.2 +/- 0.7 to 2.5 +/- 0.5 ng ANG I. ml-1. h-1, and plasma ANG II decreased from 11.9 +/- 3.0 to 8.2 +/- 2.1 pg/ml. The renin-angiotensin system is inhibited during acute hypoxia despite sympathetic activation. Under these conditions, ANG II AT1-receptor antagonism does not attenuate HPV.  相似文献   

6.
Sympathetic hyperactivity and hypertension caused by chronic treatment with ouabain or sodium-rich artificial cerebrospinal fluid (aCSF) can be prevented by central administration of an angiotensin type 1 (AT(1)) receptor blocker. In the present study, we assessed whether, in Wistar rats, chronic peripheral treatment with the AT(1) receptor blockers losartan and embusartan can exert sufficient central effects to prevent these central effects of ouabain and sodium. Losartan or embusartan (both at 100 mg x kg(-1) x day(-1)) were given subcutaneously once daily. Ouabain (50 microg/day) was infused subcutaneously, and sodium-rich aCSF (1.2 M Na(+), 5 microl/h) was infused intracerebroventricularly, both by osmotic minipump for 13-14 days. The mean arterial pressure (MAP) at rest and in response to air stress and intracerebroventricularly injection of guanabenz (75 microg/7.5 microl), ANG II (30 ng/3 microl), and ouabain (0.5 microg/2 microl) were then measured. In control rats, chronic treatment with ouabain subcutaneously and hypertonic saline intracerebroventricularly both increased baseline MAP by 20-25 mmHg and enhanced twofold the pressor responses to air stress and depressor responses to the alpha(2)-adrenoceptor agonist guanabenz. Simultaneous treatment with losartan or embusartan fully prevented hypertension, maintained normal responses to air stress and guanabenz, and attenuated pressor responses to acute intracerebroventricular injection of ANG II and ouabain. We concluded that peripheral administration of losartan as well as embusartan can cause sufficient central effects to prevent the sympathetic hyperactivity and hypertension induced by chronic peripheral ouabain and central sodium.  相似文献   

7.
The aims of present study were to determine whether angiotensin II (ANG II) in the paraventricular nucleus (PVN) is involved in the central integration of the cardiac sympathetic afferent reflex and whether this effect is mediated by the ANG type 1 (AT(1)) receptor. While the animals were under alpha-chloralose and urethane anesthesia, mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) were recorded in sinoaortic-denervated and cervical-vagotomized rats. A cannula was inserted into the left PVN for microinjection of ANG II. The cardiac sympathetic afferent reflex was tested by electrical stimulation (5, 10, 20, and 30 Hz in 10 V and 1 ms) of the afferent cardiac sympathetic nerves or epicardial application of bradykinin (BK) (0.04 and 0.4 microg in 2 microl). Microinjection of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to electrical stimulation. The percent change of RSNA response to 20- and 30-Hz stimulation increased significantly at the highest dose of ANG II (3 nmol). The effects of ANG II were prevented by pretreatment with losartan (50 nmol) into the PVN. Microinjection of ANG II (0.3 nmol) into the PVN significantly enhanced the RSNA responses to epicardial application of BK, which was abolished by pretreatment with losartan (50 nmol) into the PVN. These results suggest that exogenous ANG II in the PVN augments the cardiac sympathetic afferent reflex evoked by both electrical stimulation of cardiac sympathetic afferent nerves and epicardial application of BK. These central effects of ANG II are mediated by AT(1) receptors.  相似文献   

8.
Chronic heart failure is often associated with sympathoexcitation and blunted arterial baroreflex function. These phenomena have been causally linked to elevated central ANG II mechanisms. Recent studies have shown that NAD(P)H oxidase-derived reactive oxygen species (ROS) are important mediators of ANG II signaling and therefore might play an essential role in these interactions. The aims of this study were to determine whether central subchronic infusion of ANG II in normal animals has effects on O2- production and expression of NAD(P)H oxidase subunits as well as ANG II type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM). Twenty-four male New Zealand White rabbits were divided into four groups and separately received a subchronic intracerebroventricular infusion of saline alone, ANG II alone, ANG II with losartan, and losartan alone for 1 wk. On day 7 of intracerebroventricular infusion, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) values were recorded, and arterial baroreflex sensitivity was evaluated while animals were in the conscious state. We found that ANG II significantly increased baseline RSNA (161.9%; P < 0.05), mRNA and protein expression of AT1 receptors (mRNA, 66.7%; P < 0.05; protein, 85.1%; P < 0.05), NAD(P)H oxidase subunits (mRNA, 120.0-200.0%; P < 0.05; protein, 90.9-197.0%; P < 0.05), and O2- production (83.2%; P < 0.05) in the RVLM. In addition, impaired baroreflex control of HR (Gain(max) reduced by 48.2%; P < 0.05) and RSNA (Gain(max) reduced by 53.6%; P < 0.05) by ANG II was completely abolished by losartan. Losartan significantly decreased baseline RSNA (-49.5%; P < 0.05) and increased baroreflex control of HR (Gain(max) increased by 64.8%; P < 0.05) and RSNA (Gain(max) increased by 67.9%; P < 0.05), but had no significant effects on mRNA and protein expression of AT1 receptor and NAD(P)H oxidase subunits and O2- production in the RVLM. These data suggest that in normal rabbits, NAD(P)H oxidase-derived ROS play an important role in the modulation of sympathetic activity and arterial baroreflex function by subchronic central treatment of exogenous ANG II via AT1 receptors.  相似文献   

9.
We examined the effects of hypotension and fluid depletion on water and sodium ingestion in rats in response to intracerebroventricular infusions of ANG II. Hypotension was produced by intravenous infusion of the vasodilator drug minoxidil (25 microg x kg(-1) x min(-1)) concurrently with the angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) to prevent endogenous ANG II formation. Hypotension increased water intake in response to intracerebroventricular ANG II (30 ng/h) but not intake of 0.3 M NaCl solution and caused significant urinary retention of water and sodium. Acute fluid depletion was produced by subcutaneous injections of furosemide (10 mg/kg body wt) either alone or with captopril (100 mg/kg body wt sc) before intracerebroventricular ANG II (15 or 30 ng/h) administration. Fluid depletion increased water intake in response to the highest dose of intracerebroventricular ANG II but did not affect saline intake. In the presence of captopril, fluid depletion increased intakes of both water and saline in response to both doses of intracerebroventricular ANG II. Because captopril administration causes hypotension in fluid-depleted animals, the results of the two experiments suggest that hypotension in fluid-replete animals preferentially increases water intake in response to intracerebroventricular ANG II and in fluid-depleted animals increases both salt and water intake in response to intracerebroventricular ANG II.  相似文献   

10.
We examined whether ANG II receptors in the central nervous system mediate hemodynamic responses to pharmacological (cocaine) and behavioral (cold water) stressors. After administration of cocaine (5 mg/kg iv), rats were classified as vascular responders (VR) if their pressor response was due entirely to an increase in systemic vascular resistance (SVR) despite a decrease in cardiac output (CO). Cocaine elicited a pressor response in mixed responders (MR) that was dependent on small increases in both SVR and CO. ANG II (30 ng/5 microl icv, 5 min before cocaine) augmented the decrease in CO in VR and prevented the increase in CO in MR. Administration of [Sar(1),Thr(8)]ANG II (20 microg/5 microl icv; sarthran) before cocaine attenuated the decrease in CO and the large increase in SVR in VR so that they were no longer different from MR. Losartan (20 microg icv) or captopril (50 microg icv) preceding cocaine administration also attenuated the decrease in CO and the large increase in SVR seen in VR only. The role of angiotensin was not specific for cocaine, because ANG II (icv) pretreatment before startle with cold water (1 cm deep) enhanced the decrease in CO and the increase in SVR in both MR and VR, whereas losartan (icv) pretreatment before startle attenuated the decrease in CO and the increase in SVR in VR so that they were no longer different from MR. These data suggest that central ANG II receptors mediate the greater vascular and cardiac responsiveness in vascular responders to acute pharmacological and behavioral stressors.  相似文献   

11.
Exercise training (EX) has become an important modality capable of enhancing the quality of life and survival of patients with chronic heart failure (CHF). Although 4 wk of EX in animals with CHF evoked a reduction in renal sympathetic nerve activity and ANG II plasma levels and an enhancement in baroreflex sensitivity at rest (Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH, Circulation 102: 1854-1862, 2000; Liu JL, Kulakofsky J, Zucker IH, J Appl Physiol 92: 2403-2408, 2002), it is unclear whether these phenomena are causally related. CHF was induced in rabbits by ventricular pacing (360-380 beats/min) for 3 wk. CHF rabbits were EX for 4 wk at 15-18 m/min, 6 days/wk, 30-40 min/day. Three groups of rabbits were studied: CHF (with no EX), CHF-EX, and CHF-EX + ANG II infusion [in which ANG II levels were kept at or near levels observed in CHF (non-EX) rabbits by subcutaneous osmotic minipump infusion]. EX prevented the increase in plasma ANG II levels shown in CHF rabbits. CHF and CHF-EX + ANG II infusion rabbits had significantly depressed baroreflex sensitivity slopes (P < 0.01 for sodium nitroprusside and P < 0.001 for phenylephrine) and higher baseline renal sympathetic nerve activities than CHF-EX animals. EX downregulated mRNA and protein expression of ANG II type 1 receptors in the rostral ventrolateral medulla in CHF rabbits. This was prevented by ANG II infusion. These data are consistent with the view that the reduction in sympathetic nerve activity and the improvement in baroreflex function in CHF after EX are due to the concomitant reduction in ANG II and angiotensin receptors in the central nervous system.  相似文献   

12.
The role of ANG II in the arterial baroreflex control of renal sympathetic nerve activity (RSNA) in eight term-pregnant (P) and eight nonpregnant (NP) conscious rabbits was assessed using sequential intracerebroventricular and intravenous infusions of losartan, an AT1 receptor antagonist. The blood pressure (BP)-RSNA relationship was generated by sequential inflations of aortic and vena caval perivascular occluders. Pregnant rabbits exhibited a lower maximal RSNA reflex gain (-44%) that was primarily due to a reduction in the maximal sympathetic response to hypotension (P, 248 +/- 20% vs. NP, 357 +/- 41% of rest RSNA, P < 0.05). Intracerebroventricular losartan decreased resting BP in P (by 9 +/- 3 mmHg, P < 0.05) but not NP rabbits, and had no effect on the RSNA baroreflex in either group. Subsequent intravenous losartan decreased resting BP in NP and further decreased BP in P rabbits, but had no significant effect on the maximal RSNA reflex gain. ANG II may have an enhanced role in the tonic support of BP in pregnancy, but does not mediate the gestational depression in the arterial baroreflex control of RSNA in rabbits.  相似文献   

13.
Angiotensin II (ANG II) is known to activate central sympathetic neurons. In this study we determined the effects of ANG II on the autonomic components of the cardiovascular responses to stimulation of nasopharyngeal receptors with cigarette smoke. Experiments were carried out in conscious New Zealand White rabbits instrumented to record arterial pressure and heart rate. Rabbits were exposed to 50 ml of cigarette smoke before and after subcutaneous osmotic minipump delivery of ANG II at a dose of 50 ng.kg(-1).min(-1) for 1 wk in one group and intracerebroventricular (icv) infusion at a dose of 100 pmol/min for 1 h in a second group. The responses were compared before and after heart rate was controlled by pacing. Autonomic components were evaluated by intravenous administration of atropine methyl bromide (0.2 mg/kg) and prazosin (0.5 mg/kg). ANG II given either systemically or icv significantly blunted the pressor response to smoke (P < 0.05) when the bradycardic response was prevented. This blunted response was not due to an absolute increase in baseline blood pressure after ANG II infusion (71.64 +/- 11.6 vs. 92.1 +/- 19.8 mmHg; P < 0.05) because normalization of blood pressure with sodium nitroprusside to pre-ANG II levels also resulted in a significantly blunted pressor response to smoke. The effect of smoke was alpha(1)-adrenergic receptor-mediated because it was essentially abolished by prazosin in both the pre- and the post-ANG II states (P < 0.05). These results suggest that elevations in central ANG II reduce the sympathetic response to smoke in conscious rabbits. This effect may be due to an augmentation of baseline sympathetic outflow and a reduction in reflex sensitivity similar to the effect of ANG II on baroreflex function.  相似文献   

14.
We examined whether adrenomedullin, a vasoactive peptide expressed in the heart, modulates the increase in blood pressure, changes in systolic and diastolic function, and left ventricular hypertrophy produced by long-term administration of ANG II or norepinephrine in rats. Subcutaneous administration of adrenomedullin (1.5 microg.kg(-1).h(-1)) for 1 wk inhibited the ANG II-induced (33.3 microg.kg(-1).h(-1) sc) increase in mean arterial pressure by 67% (P < 0.001) but had no effect of norepinephrine-induced (300 microg.kg(-1).h(-1) sc) hypertension. Adrenomedullin enhanced the ANG II-induced improvement in systolic function, resulting in a further 9% increase (P < 0.01) in the left ventricular ejection fraction and 19% increase (P < 0.05) in the left ventricular fractional shortening measured by echocardiography, meanwhile norepinephrine-induced changes in systolic function were remained unaffected. Adrenomedullin had no effect on ANG II- or norepinephrine-induced left ventricular hypertrophy or expression of hypertrophy-associated genes, including contractile protein and natriuretic peptide genes. The present study shows that adrenomedullin selectively suppressed the increase in blood pressure and augmented the improvement of systolic function induced by ANG II. Because adrenomedullin had no effects on ANG II- and norepinephrine-induced left ventricular hypertrophy, circulating adrenomedullin appears to act mainly as a regulator of vascular tone and cardiac function.  相似文献   

15.
Sympathovagal balance and baroreflex control of heart rate (HR) were evaluated during the development (1 and 4 wk) of one-kidney, one-clip (1K1C) hypertension in conscious mice. The development of cardiac hypertrophy and fibrosis was also examined. Overall variability of systolic arterial pressure (AP) and HR in the time domain and baroreflex sensitivity were calculated from basal recordings. Methyl atropine and propranolol allowed the evaluation of the sympathovagal balance to the heart and the intrinsic HR. Staining of renal ANG II in the kidney and plasma renin activity (PRA) were also evaluated. One and four weeks after clipping, the mice were hypertensive and tachycardic, and they exhibited elevated sympathetic and reduced vagal tone. The intrinsic HR was elevated only 1 wk after clipping. Systolic AP variability was elevated, while HR variability and baroreflex sensitivity were reduced 1 and 4 wk after clipping. Renal ANG II staining and PRA were elevated only 1 wk after clipping. Concentric cardiac hypertrophy was observed at 1 and 4 wk, while cardiac fibrosis was observed only at 4 wk after clipping. In conclusion, these data further support previous findings in the literature and provide new features of neurohumoral changes during the development of 1K1C hypertension in mice. In addition, the 1K1C hypertensive model in mice can be an important tool for studies evaluating the role of specific genes relating to dependent and nondependent ANG II hypertension in transgenic mice.  相似文献   

16.
The present study tested the hypothesis that intrarenal adenoviral transfer of an intracellular cyan fluorescent fusion of angiotensin II (ECFP/ANG II) selectively in proximal tubules of the kidney increases blood pressure by activating AT(1) (AT(1a)) receptors. Intrarenal transfer of ECFP/ANG II was induced in the superficial cortex of rat and mouse kidneys, and the sodium and glucose cotransporter 2 (sglt2) promoter was used to drive ECFP/ANG II expression selectively in proximal tubules. Intrarenal transfer of ECFP/ANG II induced a time-dependent, proximal tubule-selective expression of ECFP/ANG II in the cortex, which peaked at 2 wk and was sustained for 4 wk. ECFP/ANG II expression was low in the glomeruli and the entire medulla and was absent in the contralateral kidney or extrarenal tissues. At its peak of expression in proximal tubules at day 14, ANG II was increased by twofold in the kidney (P < 0.01) and more than threefold in proximal tubules (P < 0.01), but remained unchanged in plasma or urine. Systolic blood pressure was increased in ECFP/ANG II-transferred rats by 28 ± 6 mmHg (P < 0.01), whereas fractional sodium excretion was decreased by 20% (P < 0.01) and fractional lithium excretion was reduced by 24% (P < 0.01). These effects were blocked by losartan and prevented in AT(1a) knockout mice. Transfer of a scrambled ECFP/ANG IIc had no effects on blood pressure, kidney, and proximal tubule ANG II, or sodium excretion. These results provide evidence that proximal tubule-selective transfer of an intracellular ANG II fusion protein increases blood pressure by activating AT(1a) receptors and increasing sodium reabsorption in proximal tubules.  相似文献   

17.
The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep (n = 6), intravenous infusion of ANG II (2 microg/h) gradually increased mean arterial pressure (MAP) from 82 +/- 3 to 96 +/- 5 mmHg over 7 days (P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 +/- 6.4 to 38.2 +/- 6.7 ml.min(-1).mmHg(-1) (P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 +/- 1 mmHg in the control period and by 7 +/- 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT(1) receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 microg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.  相似文献   

18.
Although ANG II exerts a variety of effects on the cardiovascular system, its effects on the peripheral parasympathetic neurotransmission have only been evaluated by changes in heart rate (an effect on the sinus node). To elucidate the effect of ANG II on the parasympathetic neurotransmission in the left ventricle, we measured myocardial interstitial ACh release in response to vagal stimulation (1 ms, 10 V, 20 Hz) using cardiac microdialysis in anesthetized cats. In a control group (n = 6), vagal stimulation increased the ACh level from 0.85 +/- 0.03 to 10.7 +/- 1.0 (SE) nM. Intravenous administration of ANG II at 10 microg x kg(-1) x h(-1) suppressed the stimulation-induced ACh release to 7.5 +/- 0.6 nM (P < 0.01). In a group with pretreatment of intravenous ANG II receptor subtype 1 (AT(1) receptor) blocker losartan (10 mg/kg, n = 6), ANG II was unable to inhibit the stimulation-induced ACh release (8.6 +/- 1.5 vs. 8.4 +/- 1.7 nM). In contrast, in a group with local administration of losartan (10 mM, n = 6) through the dialysis probe, ANG II inhibited the stimulation-induced ACh release (8.0 +/- 0.8 vs. 5.8 +/- 1.0 nM, P < 0.05). In conclusion, intravenous ANG II significantly inhibited the parasympathetic neurotransmission through AT(1) receptors. The failure of local losartan administration to nullify the inhibitory effect of ANG II on the stimulation-induced ACh release indicates that the site of this inhibitory action is likely at parasympathetic ganglia rather than at postganglionic vagal nerve terminals.  相似文献   

19.
Circulating ANG II modulates the baroreceptor reflex control of heart rate (HR), at least partly via activation of ANG II type 1 (AT1) receptors on neurons in the area postrema. In this study, we tested the hypothesis that the effects of circulating ANG II on the baroreflex also depend on AT1 receptors within the nucleus tractus solitarius (NTS). In confirmation of previous studies in other species, increases in arterial pressure induced by intravenous infusion of ANG II had little effect on HR in urethane-anesthetized rats, in contrast to the marked bradycardia evoked by equipressor infusion of phenylephrine. In the presence of a continuous background infusion of ANG II, the baroreflex control of HR was shifted to higher levels of HR but had little effect on the baroreflex control of renal sympathetic activity. The modulatory effects of circulating ANG II on the cardiac baroreflex were significantly reduced by microinjection of candesartan, an AT1 receptor antagonist, into the area postrema and virtually abolished by microinjections of candesartan into the medial NTS. After acute ablation of the area postrema, a background infusion of ANG II still caused an upward shift of the cardiac baroreflex curve, which was reversed by subsequent microinjection of candesartan into the medial NTS. The results indicate that AT1 receptors in the medial NTS play a critical role in modulation of the cardiac baroreflex by circulating ANG II via mechanisms that are at least partly independent of AT1 receptors in the area postrema.  相似文献   

20.
Porter JP  Phillips A  Rich J  Wright D 《Life sciences》2004,75(13):1595-1607
There is increasing evidence that early life stressors may program blood pressure control mechanisms such that the risk for cardiovascular disease in later life is increased. In the present investigation, the effect of repeated restraint/heat stress during the two-week period immediately after weaning on baroreflex function was determined and the contribution of brain angiotensin II (ANG II) to the changes was assessed in young, conscious, freely moving Sprague Dawley rats. In rats two weeks post weaning, basal MAP was significantly higher and basal HR significantly lower than rats tested immediately after weaning. This change in the operating point of HR was not accompanied by any changes in baroreflex function. Treatment with chronic icv infusion of losartan, an AT1 receptor antagonist, during the two-week period prevented the changes in basal MAP and HR. Chronic stress during the two weeks post weaning, whether due to surgical implantation of icv cannulae or due to restraint/heat stress, significantly shifted the set-point of the baroreflex function to a higher pressure. Chronic icv infusion of losartan during the period prevented these effects (at least in the case of stress due to the presence of icv cannulae) suggesting a role for brain ANG II in the change. Changes in the expression of CRH mRNA in the paraventricular nucleus could not explain the stress-related change in baroreflex function. If the rightward shift in the baroreflex persists into adulthood, it could increase the susceptibility to cardiovascular diseases such as hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号