首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was carried out during May 1993, in southern England, on eight chemically untreated Apis mellifera L. colonics heavily infested with Varroa jacobsoni (15–40% of worker sealed brood). The position and time of capping of 3.228 worker sealed brood were recorded. At two hour intervals, starting from when each cell was capped, groups of worker cells were uncapped and their contents recorded. It was found that each V. jacobsoni female could deposit five or sometimes six larvae in a worker cell, of which four (1 male and 3 females) may reach maturity before the bee emerged from its cell. However, mortality of the offspring resulted in only 1.45 female offspring reaching maturity, for each normally reproducing mother mite, before the bee emerged. The mean development time of the first three female offspring was 134 hours (±=3 h.n=3), shorter than that of the male (154 hours). The first larva was deposited approximately 60 hours after the cell was capped, and developed into a male. Subsequent larvae were deposited at intervals varying from 26–32 hours, and all developed into females.  相似文献   

2.
A study carried out during the summer of 1994, in southern England, investigated the developmental times and mortality ofVarroa jacobsoni inApis mellifera drone cells. The position and time of capping of 2671 naturally infested drone cells were recorded. Six hours after the cell was capped, 90% of the mites were free from the brood food to start feeding on the developing drone. The developmental time of the mite's first three female offspring (133±3 h) and the male offspring (150 h) and the intervals between egg laying (20–32 h) were similar to those found in worker cells. However, the mortality of the offspring was much lower in drone cells than worker cells. The mode numbers of eggs laid were six and five in drone and worker cells, respectively. All offspring had ample time to develop fully in drone cells with the sixth offspring reaching maturity approximately 1 day before the drone bee emerged. Normal mites (those which lay five or six viable eggs) produced on average four female adult offspring but since only around approximately 55% of the mite population produced viable offspring the mean number of viable adult female offspring per total number of mother mites was 2 to 2.2 in drone cells.  相似文献   

3.
4.
Varroa mite free colonies of the honey bee Apis mellifera L. were artificially infested, with either parasitized bees or infested worker brood. Queens were kept in cages to provide broodless conditions during the experiment. Parasites that fell to the bottom of the hive were monitored at 3–4 days intervals for three months. An acaricide treatment was used to recover mites still alive after this time period. Survivorship at each interval was calculated and life table functions of the phoretic mite cohorts were obtained. Trends in survival of Varroa cohorts showed maximum lifespans ranging from 80 to 100 days. Life expectancy of these phoretic cohorts at the beginning of the experiment ranges between 19 to 41, with a mean of 31 days.  相似文献   

5.
Three groups of bee colonies were treated with lactic acid, the pesticide Perizin or lactic acid and Perizin in order to validate the applicability of lactic acid in Varroa mite control. The lactic acid treatment was conducted during winter. Eight ml of lactic acid (15%) per comb side were applied with a dosage gun. The treatment was highly efficient and 94.2%–99.8% of the mites in a colony were killed. Due to precise dosage the lactic acid treatment caused less bee mortality than a treatment with the pesticide Perizin. A lactic acid treatment at-0.2°C caused bee mortality comparable to a Perizin treatment. The number of queen losses after lactic acid treatment and after Perizin treatment was comparable. The number of bees, the size of the brood area, the amount of stored honey and Nosema infestation rates were not significantly different in lactic acid treated colonies and Perizin treated colonies in spring after treatment.  相似文献   

6.
The response of Asian honeybee (Apis cerana Fabr.) colonies toward the introduced worker brood of the European honeybee (Apis mellifera L.) infested with the parasitic mite Varroa jacobsoni Oudemans was investigated. When no mites were present, 40% of the healthy open brood and 3% of the healthy capped brood of the European honeybees were rejected by the Asian honeybee colonies. When the brood was infested, brood rejection was significantly higher for open (P < 0.05) and capped broods (P < 0.01). The brood removal activity decreased with time. The quantity of brood removed was also correlated with mite infestation level for open (r2 = 0.933) and sealed broods (r2 = 0.918). The feasibility of using heterospecific colonies to control Varroa mite is unclear and is discussed from behavioral and ecological points of view.  相似文献   

7.
Nosema ceranae is the most prevalent endoparasite of Apis mellifera iberiensis and it is a major health problem for bees worldwide. The infective capacity of N. ceranae has been demonstrated experimentally in honey bee brood, however no data are available about its prevalence in brood under natural conditions. Thus, brood combs from 10 different hives were analyzed over two consecutive years, taking samples before and after winter. A total of 1433 larvae/pupae were analyzed individually and N. ceranae (3.53%) was the microsporidian most frequently detected, as opposed to Nosema apis (0.42%) which was more frequently detected in conjunction with N. ceranae (0.71%). The active multiplication of both microsporidians was confirmed by the expression (real-time-PCR) of the N. ceranae polar tube protein 3 gene and/or the N. apis RNA polymerase II gene in 24% of the brood samples positive for Nosema spp. Both genes are related to microsporidian multiplication. As such, N. ceranae multiplication was confirmed in 1.06% of the samples, while N. apis multiplication was only observed in co-infections with N. ceranae (0.07%). Brood cells were analyzed for the presence of Nosema spp., as those are the immediate environment where the brood stages develop. The brood samples infected by Nosema spp. were in brood cells in which that microsporidians were not detected, while brood cells positive for N. ceranae hosted brood stages that were not apparently infected, indicating that this is unlikely to be the main pathway of infection. Finally, the colonies with brood infected by N. ceranae showed higher levels (numbers) of infected adult bees, although the differences were not significant before (P = 0.260), during (P = 0.055) or after (P = 0.056) brood sampling. These results show that N. ceranae is a bee parasite ubiquitous to all members of the colony, irrespective of the age of the bee. It is also of veterinary interest and should be considered when studying the epidemiology of the disease.  相似文献   

8.
Two lines of honey bees ( Apis mellifera ligustica ) were selectively propagated by instrumental insemination using the population growth of the Varroa mite as a criteria. Different infestation rates are at least partially genetic since selection produced significant bi-directional differences between lines over a period of three subsequent generations. There was no correlation between several behavioural and physiological characteristics which are potentially associated with Varroa resistance (hygienic behaviour, physical damage to mites, infertility of the intruding mites) and the development of the Varroa population after artificial infestation. There was a positive significant correlation between the total mites in the colonies and the amount of reared brood. Colony infestation was also positively correlated with the amount of honey harvested.  相似文献   

9.
10.
The mite Varroa jacobsoni was reared in artificial gelatin cells under laboratory conditions and the possible presence of factors inhibiting Varroa reproduction was studied. In cells infested with three mites, the mean offspring per female was reduced to 75% of that in singly infested cells. When gelatin cells were used for two successive rearing cycles, both the proportion of reproducing females and the offspring per reproducing female were significantly lower in cells that had contained an infested larva during the first rearing cycle than in those with an uninfested larva. The mean reduction of the offspring per female was 48%; this suggests that inhibitors of the reproduction are released into infested cells. Treatment of gelatin cells with the hexane extract of cells in which an infested bee pupa had developed caused a 21% reduction in the mean offspring per female, with a difference close to the significance level (p=0.07).  相似文献   

11.
An account is given of experiments and observations made to discover the factors that decide whether the bees use a particular cell for brood-rearing, storing honey or storing pollen. The implications are discussed in relation to the overall pattern of food storage and brood-rearing in the colony.  相似文献   

12.
Through the use of proboscis-extension reflex conditioning, we demonstrate that honey bees (Apis mellifera L.) bred for hygienic behavior (a behavioral mechanism of disease resistance) are able to discriminate between odors of healthy and diseased brood at a lower stimulus level than bees from a non-hygienic line. Electroantennogram recordings confirmed that hygienic bees exhibit increased olfactory sensitivity to low concentrations of the odor of chalkbrood infected pupae (a fungal disease caused by Ascosphaera apis). Three-week-old hygienic bees were able to discriminate between the brood odors significantly better than three-week old non-hygienic bees. However, the differential performance in brood odor discrimination was primarily genetically based, not a direct result of age, experience, or the temporary behavioral state of the bee. Lower stimulus thresholds for both the olfactory and behavioral responses of hygienic bees may facilitate their ability to detect, uncap and remove diseased brood rapidly from the nest. In contrast, non-hygienic bees, possessing higher response thresholds, may not be able to detect diseased brood as easily. Our results provide an example of how physiological and behavioral differences between the hygienic and non-hygienic honey bee lines, operating at the level of the individual, could produce colony-specific behavioral phenotypes.  相似文献   

13.
Fifteen honeybee colonies (Apis mellifera L.) infested with the ectoparasiteVarroa jacobsoni Oud. were monitored for the number of mites falling to the bottom of the hive. Mites in the debris were counted periodically on the plastic sheet on which they were collected. Two months later, colonies were treated with an acaricide to determine mite population. A high positive correlation was found between the number of mites collected in the hive debris over different periods and the final population size. Based on this correlation, it was possible to use hive debris counts to predict the degree of infestation. Furthermore, counting fallen mites over a period of two months, followed by an acaricide treatment, might be a useful method of estimating the rate of growth ofV. jacobsoni in honeybee colonies.  相似文献   

14.
Chalkbrood disease affects the larvae of honeybees Apis mellifera L. and is caused by the fungus Ascosphaera apis. Infected larvae die when they are stretched in the cap cell and suffer a gradual hardening that ends in a very hard structure (mummie). Several studies have demonstrated that colonies that express an efficient hygienic behaviour (uncapping of cell and subsequent removal of dead brood) exhibit a higher resistance to the disease. However, it remains unclear whether the advantage of hygienic colonies over less hygienic ones lies in the ability to remove mummies or in the early detection of infected larvae and its cannibalization before they harden. To elucidate this aspect, the hygienic behaviour of 24 colonies, which were subsequently provided with pollen cakes containig A. apis, was evaluated. The number of mummies and the number of partially cannibalized and whole larvae in uncapped cells were recorded. The most hygienic colonies controlled the disease better. These colonies also had a higher tendency to uncap cells that contained infected larvae and cannibalize them. The presence of A. apis in partially cannibalized and whole larvae in uncapped cells indicate that the advantage of hygienic colonies over less hygienic ones lies in the early detection of infected larvae death and their quick removal from the cell before they become mummies.  相似文献   

15.
《Phytochemistry》1999,52(7):1239-1254
Epicuticular waxes from the aphid-resistant red raspberry (Rubus idaeus) cultivar Autumn Bliss and the aphid-susceptible cultivar Malling Jewel were collected from the newly emerging crown leaves, and also from the group of four more mature leaves immediately below the crown. Resistance and susceptibility status of the leaves to infestation by the large raspberry aphid, Amphorophora idaei, were determined by bioassay with the insect just prior to collection of the wax. Analysis showed the waxes to consist of a complex mixture of free fatty acids; free primary alcohols and their acetates; secondary alcohols; ketones; terpenoids including squalene, phytosterols, tocopherol and amyrins; alkanes and long chain alkyl and terpenyl esters. Compositional differences which may relate to A. idaei-resistance status were noticeably higher levels of sterols, particularly cycloartenol, together with the presence of branched alkanes, and an absence of C29 ketones and the symmetrical C29 secondary alcohol in wax from the resistant cultivar Bliss. There were also differences between the cultivars in the distribution of individual amyrins and tocopherols and in the chain length distribution for homologues of fatty acids, primary alcohols and alkanes, and these may also be related to resistance to A. idaei. Emerging leaves had lower levels of primary alcohols and terpenes, but higher levels of long-chain alkyl esters, and in general, more compounds of shorter chain-length than the more mature leaves. During bioassay A. idaei displayed a preference to settle on the more mature leaves. This may be due to greater wax coverage and higher levels of the compounds of shorter chain length found in the newly emerged younger leaves at the crown of the plant.  相似文献   

16.
In this study, we have determined whether immunization with hypodermin A (HA), associated with various adjuvants, could provide protective immunity for calves when challenged with a natural hypoderma infestation. Groups of naive calves were vaccinated with HA antigen alone or with adjuvants [Freund's incomplete adjuvant (FIA) or alumina phosphate (AP)]. Subcutaneous injection with HA antigen with or without adjuvant did not significantly protect calves against a natural hypodermosis infestation. The humoral response during the infestation period was evaluated by ELISA. A significant earlier and greater response was induced in groups vaccinated with HA alone and HA combined with FIA. These results indicate that HA, in this vaccination protocol, induces a very incomplete protection in calves exposed to a natural infestation.  相似文献   

17.
This study experimentally examines the relationship between colony state and the behaviour of individual pollen and nectar foragers in the honey bee, Apis mellifera L. In the first experiment we test the prediction that individual pollen foragers from colonies with higher brood quantities should exhibit a greater work effort for pollen resources than individual pollen foragers from colonies with low brood quantities. Eight colonies were assigned into two treatment groups; HIGH brood colonies were manipulated to contain 9600±480 cm2 brood area; LOW brood colonies were manipulated to contain 1600±80 cm2 brood area. We measured colony brood levels over the course of the experiment and collected individual pollen loads from returning pollen foragers. We found that, while colonies remained significantly different in brood levels, individual pollen foragers from HIGH brood colonies collected larger loads than individuals from LOW brood colonies. In the second experiment we investigated the influence of colony size on the behaviour of individual nectar foragers. We assigned eight colonies to two treatment groups; LARGE colonies were manipulated to contain 35000±1700 adult workers with 3500±175 cm2 brood area, and SMALL colonies were manipulated to contain 10000±500 adult workers with 1000±50 cm2 brood area. We observed foraging trips of individually marked workers and found that individuals from LARGE colonies made longer foraging trips than those from SMALL colonies (LARGE: 1666.7±126.4 seconds, SMALL: 1210.8±157.6 seconds), and collected larter nectar loads (LARGE: 19.2±1.0 l, SMALL: 14.6±0.8 l). These results indicate that individual nectar foragers from LARGE colonies tend to work harder than individuals from SMALL colonies. Both experiments indicate that the values of nectar and pollen resources to a colony change depend on colony state, and that individual foragers modify their behaviour accordingly.  相似文献   

18.
19.
20.
Storage insect pests cause serious losses to all legume crops in both quality and quantity. This study was conducted to study some morphological characters and biochemical components in eight genotypes of faba bean to determine biochemical and molecular markers for resistance and susceptibility to infestation with stored insects. The results showed that chlorophyll content in leaves, phenol, tannin, peroxidase (POD), polyphenol oxidase (PPO), and protein content in leaves and seeds of faba bean plants either significantly or non significantly increased the effect of insect infestation in the resistance genotypes (L.551, L.512, L.153, NA112, and L.1) as compared with the susceptible genotypes (L.16 and T.W). Protein electrophoresis showed a wide variation between genotypes and determined some biochemical markers (sodium dodecyl sulfate poly acrylamide gel electrophoresis, SDS-PAGE). In addition, molecular genetic markers for stored insects' resistance were obtained using inter-simple sequence repeat polymerase chain reaction (ISSR-PCR) analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号