首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
gp130 is a ubiquitously expressed glycoprotein and signal transducer of interleukin 6 family of cytokines. It has been reported that gp130 has 11 potential N-glycosylation sites in the extracellular domain, and nine of them are actually N-glycosylated. However, the structure and functional role of the carbohydrate chains carried by gp130 are totally unknown. In this study, we examined the functional role of N-glycans of gp130 in mouse neuroepithelial cells. In neuroepithelial cells treated with tunicamycin, an N-glycosylation inhibitor, unglycosylated form of gp130 was detected. The unglycosylated gp130 was not phosphorylated in response to leukemia inhibitory factor stimulation. Although the unglycosylated gp130 was found to be expressed on the cell surface, it could not form a heterodimer with leukemia inhibitory factor receptor. These results suggest that N-glycans are required for the activation, but not for the localization, of gp130 in neuroepithelial cells.  相似文献   

2.
Receptor recognition by gp130 cytokines   总被引:9,自引:0,他引:9       下载免费PDF全文
Bravo J  Heath JK 《The EMBO journal》2000,19(11):2399-2411
Cytokines of the gp130 family exert their diverse biological effects by formation of stable high affinity transmembrane receptor complexes that are characterized by the presence of the shared transmembrane signalling receptor gp130. Different gp130 ligands form signalling complexes that vary in both composition and stoichiometry. Analysis of the three-dimensional structure of selected ligands and receptor elements indicates that ligands display three topologically conserved receptor recognition epitopes that interact with complementary ligand recognition elements. The composition of the signalling complex and downstream biological responses is defined by the relative affinity of different receptor components for these epitopes. The detailed structure of receptor recognition epitopes indicates that the generation of small molecule cytokine mimetics may be a feasible objective.  相似文献   

3.
4.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

5.
Here we describe a simple and efficient protocol for derivation of germline chimera-competent mouse embryonic stem cells (mESCs) from embryonic day 3.5 (E3.5) blastocysts. The protocol involves the use of early-passage mouse embryonic fibroblast feeders (MEF) and the alternation of fetal bovine serum- and serum replacement (SR)-containing media. As compared to other available protocols for mESCs derivation, our protocol differs in the combination of commercial availability of all reagents, technical simplicity and high efficiency. mESC lines are derived with approximately 50% efficiency (50 independent mESC lines derived from 96 blastocysts). We believe that this protocol could be a good starting point for (i) setting up the derivation of mESC lines in a laboratory and (ii) incorporating further steps to improve efficiency or adapt the protocol to other applications. The whole process (from blastocyst extraction to the freezing of mESC line) usually takes between 15 and 20 d.  相似文献   

6.
7.
8.
The common cytokine receptor chain, gp130, controls the activity of a group of cytokines, namely, IL-6, IL-11, IL-27, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC) and neuropoietin (NPN). This family of cytokines is involved in multiple different biological processes, including inflammation, acute phase response, immune responses and cell survival. To analyze the different components of the gp130 network, mouse mutants for the single cytokine were generated by conventional gene targeting. However, since the cytokines of the IL-6 family show redundancy, it does not reveal the complete picture. Therefore, the study of mice with a cell type specific inactivation of the gp130 receptor chain is an approach that will subsequently allow the dissection of the cellular cytokine network. Here, we summarize the experimental results of the conditional gp130 mutants published so far.  相似文献   

9.
10.
High levels of circulating interleukin-6 (IL6), and possibly neuroendocrine (NE) differentiation, correlate with advanced prostate cancer (PCa). IL6 has many overlapping biological effects with the related gp130 cytokines LIF and OSM that can be explained by the shared usage of the signalling receptor, gp130. We set out to determine whether LIF and OSM can substitute for IL6 in PCa, particularly in relation to neuroendocrine differentiation. Expression analysis of the gp130 cytokines and receptors by RT-PCR, Southern blotting and immunohistochemistry showed that they are widely expressed in LNCaP, DU145 and PC3 cells, but not in normal prostate epithelial PZ-HPV-7 cells. IL6, but not LIF or OSM inhibited proliferation, induced NE differentiation and tyrosine phosphorylation of STAT3 in LNCaP cells. The data suggests that IL6 has a unique role in the progression of PCa.  相似文献   

11.
Our knowledge of cellular differentiation processes during chondro- and osteogenesis, in particular the complex interaction of differentiation factors, is still limited. We used the model system of embryonic stem (ES) cell differentiation in vitro via cellular aggregates, so called embryoid bodies (EBs), to analyze chondrogenic and osteogenic differentiation. ES cells differentiated into chondrocytes and osteocytes throughout a series of developmental stages resembling cellular differentiation events during skeletal development in vivo. A lineage from pluripotent ES cells via mesenchymal, prechondrogenic cells, chondrocytes and hypertrophicchondrocytes up to osteogenic cells was characterized. Furthermore, we found evidence for another osteogenic lineage, bypassing the chondrogenic stage. Together our results suggest that this in vitro system will be helpful to answer so far unacknowledged questions regarding chondrogenic and osteogenic differentiation. For example, we isolated an as yet unknown cDNA fragment from ES cell-derived chondrocytes, which showed a developmentally regulated expression pattern during EB differentiation. Considering ES cell differentiation as an alternative approach for cellular therapy, we used two different methods to obtain pure chondrocyte cultures from the heterogenous EBs. First, members of the transforming growth factor (TGF)-β family were applied and found to modulate chondrogenic differentiation but were not effective enough to produce sufficient amounts of chondrocytes. Second, chondrocytes were isolated from EBs by micro-manipulation. These cells initially showed dedifferentiation into fiboblastoid cells in culture, but later redifferentiated into mature chondrocytes. However, a small amount of chondrocytes isolated from EBs transdifferentiated into other mesenchymal cell types, indicating that chondrocytes derived from ES cells posses a distinct differentiation plasticity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Generation of insulin-expressing cells from mouse embryonic stem cells   总被引:6,自引:0,他引:6  
The therapeutic potential of transplantation of insulin-secreting pancreatic beta-cells has stimulated interest in using pluripotent embryonic stem (ES) cells as a starting material from which to generate insulin secreting cells in vitro. Mature beta-cells are endodermal in origin so most reported differentiation protocols rely on the identification of endoderm-specific markers. However, endoderm development is an early event in embryogenesis that produces cells destined for the gut and associated organs in the embryo, and for the development of extra-embryonic structures such as the yolk sac. We have demonstrated that mouse ES cells readily differentiate into extra-embryonic endoderm in vitro, and that these cell populations express the insulin gene and other functional elements associated with beta-cells. We suggest that the insulin-expressing cells generated in this and other studies are not authentic pancreatic beta-cells, but may be of extra-embryonic endodermal origin.  相似文献   

13.
Summary The manipulation of embryonic stem (ES) cells to introduce directional genetic changes into the genome of mice has become an important tool in biomedical research. Monitoring of cell morphology before and after DNA manipulation and special culture conditions are a prerequisite to preserve the pluripotent properties of ES cells and thus their ability to generate chimera and effective germline transmission (GLT). It has been reported that prolonged cell culturing may affect the diploid chromosomal composition of cells and therefore the percentage of chimerism and GLT. Herein, we report multicolor-fluorescence in situ hybridization (M-FISH) analysis of four different ES cell lines/clones. Although the morphology of all four ES cell lines/clones appeared normal and all four expressed the early markers Oct-3/4 and Nanog, two cell lines presented consistent numerical and structural chromosome aberrations. We demonstrate that M-FISH is a sensitive and accurate method for a comprehensive karyotype analysis of ES cells and may minimize time, costs, and disappointment due to inadequate ES cell sources. Both authors contributed equally to this work.  相似文献   

14.
Feeder cells are usually used in culturing embryonic stem cells (ESCs) to maintain their undifferentiated and pluripotent status. To test whether mouse embryonic stem cells (mESCs) may be a source of feeder cells to support their own growth, 48 fibroblast-like cell lines were isolated from the same mouse embryoid bodies (mEBs) at three phases (10th day, 15th day, 20th day), and five of them, mostly derived from 15th day mEBs, were capable of maintaining mESCs in an undifferentiated and pluripotent state over 10 passages, even up to passage 20. mESCs cultured on the feeder system derived from these five cell lines expressed alkaline phosphatase and specific mESCs markers, including SSEA-1, Oct-4, Nanog, and formed mEBs in vitro and teratomas in vivo. These results suggest that mEB-derived fibroblasts (mEB-dFs) could serve as feeder cells that could sustain the undifferentiated growth and pluripotency of their own mESCs in culture. This study not only provides a novel feeder system for mESCs culture, avoiding a lot of disadvantages of commonly used mouse embryonic fibroblasts as feeder cells, but also indicates that fibroblast-like cells derived from mESCs take on different functions. Investigating the molecular mechanisms of these different functional fibroblast-like cells to act on mESCs will contribute to the understanding of the mechanisms of mESCs self-renewal.  相似文献   

15.
To evaluate the antimutagenic role of a mammalian mutY homolog, namely the Mutyh gene, which encodes adenine DNA glycosylase excising adenine misincorporated opposite 8-oxoguanine in the template DNA, we generated MUTYH-null mouse embryonic stem (ES) cells. In the MUTYH-null cells carrying no adenine DNA glycosylase activity, the spontaneous mutation rate increased 2-fold in comparison with wild type cells. The expression of wild type mMUTYH or mutant mMUTYH protein with amino acid substitutions at the proliferating cell nuclear antigen binding motif restored the increased spontaneous mutation rates of the MUTYH-null ES cells to the wild type level. The expression of a mutant mMUTYH protein with an amino acid substitution (G365D) that corresponds to a germ-line mutation (G382D) found in patients with multiple colorectal adenomas could not suppress the elevated spontaneous mutation rate of the MUTYH-null ES cells. Although the recombinant mMUTYH(G365D) purified from Escherichia coli cells had a substantial level of adenine DNA glycosylase activity as did wild type MUTYH, no adenine DNA glycosylase activity was detected in the MUTYH-null ES cells expressing the mMUTYH(G365D) mutant protein. The germ-line mutation (G382D) of the human MUTYH gene is therefore likely to be responsible for the occurrence of a mutator phenotype in these patients.  相似文献   

16.
Kim TM  Ko JH  Choi YJ  Hu L  Hasty P 《Mutation research》2011,712(1-2):20-27
Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.  相似文献   

17.
Expansion of mouse embryonic stem cells on microcarriers   总被引:1,自引:0,他引:1  
Embryonic stem (ES) cells have been shown to differentiate in vitro into a wide variety of cell types having significant potential for tissue regeneration. Therefore, the operational conditions for the ex vivo expansion and differentiation should be optimized for large-scale cultures. The expansion of mouse ES cells has been evaluated in static culture. However, in this system, culture parameters are difficult to monitor and scaling-up becomes time consuming. The use of stirred bioreactors facilitates the expansion of cells under controlled conditions but, for anchorage-dependent cells, a proper support is necessary. Cytodex-3, a microporous microcarrier made up of a dextran matrix with a collagen layer at the surface, was tested for its ability to support the expansion of the mouse S25 ES cell line in spinner flasks. The effect of inocula and microcarrier concentration on cell growth and metabolism were analyzed. Typically, after seeding, the cells exhibited a growth curve consisting of a short death or lag phase followed by an exponential phase leading to the maximum cell density of 2.5-3.9 x 10(6) cells/mL. Improved expansion was achieved using an inoculum of 5 x 10(4) cells/mL and a microcarrier concentration of 0.5 mg/mL. Medium replacement allowed the supply of the nutrients and the removal of waste products inhibiting cell growth, leading to the maintenance of the cultures in steady state for several days. These conditions favored the preservation of the S25 cells pluripotent state, as assessed by quantitative real-time PCR and immunostaining analysis.  相似文献   

18.
Transgenesis enables the elucidation of gene function; however, constant transgene expression is not always desired. The tetracycline responsive system was devised to turn on and off transgene expression at will. It has two components: a doxycycline (dox)-controlled transactivator (TA) and an inducible expression cassette. Integration of these transgenes requires two transfection steps usually accomplished by sequential random integration. Unfortunately, random integration can be problematic due to chromatin position effects, integration of variable transgene units, and mutation at the integration site. Therefore, targeted transgenesis and knockin were developed to target the TA and the inducible expression cassette to a specific location, but these approaches can be costly in time, labor, and money. Here, we describe a one-step Cre-mediated knockin system in mouse embryonic stem cells that positions the TA and inducible expression cassette to a single location. Using this system, we show dox-dependent regulation of eGFP at the DNA topoisomerase 3β promoter. Because Cre-mediated recombination is used in lieu of gene targeting, this system is fast and efficient.  相似文献   

19.
20.
Directed differentiation of dendritic cells from mouse embryonic stem cells   总被引:14,自引:0,他引:14  
Dendritic cells (DCs) are uniquely capable of presenting antigen to naive T cells, either eliciting immunity [1] or ensuring self-tolerance [2]. This property identifies DCs as potential candidates for enhancing responses to foreign [3] and tumour antigens [4], and as targets for immune intervention in the treatment of autoimmunity and allograft rejection [1]. Realisation of their therapeutic potential would be greatly facilitated by a fuller understanding of the function of DC-specific genes, a goal that has frequently proven elusive because of the paucity of stable lines of DCs that retain their unique properties, and the inherent resistance of primary DCs to genetic modification. Protocols for the genetic manipulation of embryonic stem (ES) cells are, by contrast, well established [5], as is their capacity to differentiate into a wide variety of cell types in vitro, including many of hematopoietic origin [6]. Here, we report the establishment, from mouse ES cells, of long-term cultures of immature DCs that share many characteristics with macrophages, but acquire, upon maturation, the allostimulatory capacity and surface phenotype of classical DCs, including expression of CD11c, major histocompatibility complex (MHC) class II and co-stimulatory molecules. This novel source should prove valuable for the generation of primary, untransformed DCs in which candidate genes have been overexpressed or functionally ablated, while providing insights into the earliest stages of DC ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号