首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ye Z  Cheng K  Guntaka RV  Mahato RI 《Biochemistry》2005,44(11):4466-4476
Liver fibrosis is characterized by abnormal accumulation of extracellular matrix (ECM), namely, fibrillar collagens in the hepatic stellate cells (HSCs). Earlier, we developed an antigene approach, using a type alpha1(I) collagen gene promoter specific triplex-forming oligonucleotide (TFO) to inhibit collagen gene expression. In this paper, to enhance overall delivery of TFOs to the liver and more specifically to HSCs, we synthesized mannose 6-phosphate-bovine serum albumin (M6P-BSA) by phosphorylating p-nitrophenyl-alpha-d-mannopyranoside, reducing its nitro group, and reacting it with thiophosgene to produce p-isothiocyanatophenyl-6-phospho-alpha-d-mannopyranoside (itcM6P) for conjugation with BSA. (33)P-TFO was conjugated with M6P-BSA via a disulfide bond, and the stability of the (M6P)(20)-BSA-TFO conjugate was determined. Following tail vein injection into rats, (M6P)(20)-BSA-(33)P-TFO rapidly cleared from the circulation and accumulated mainly in the liver. Almost 66% of the injected (M6P)(20)-BSA-(33)P-TFO accumulated in the liver at 30 min postinjection, which was significantly higher than that deposited after injection of (33)P-TFO. A large proportion of the injected (M6P)(20)-BSA-(33)P-TFO was taken up by the HSCs as evidenced by determination of radioactivity in the digested liver cells upon liver perfusion and separation on a Nycodenz gradient. Therefore, this TFO conjugate may be used for the treatment of liver fibrosis.  相似文献   

2.
BACKGROUND/AIMS: Transforming growth factor beta (TGFbeta1) is considered the key mediator in the process of liver fibrosis. The purpose of this investigation was to evaluate the activity of ribozymes against TGFbeta1 in a cell-free system and activated hepatic stellate cells (HSCs), and antifibrotic effect in activated HSCs in vitro and in rats. METHODS: Three ribozymes targeting against TGFbeta1 mRNA were designed, and then cloned into the U1 snRNA expression cassette. The chimeric ribozymes were selected for the analysis of their performances in activated HSCs through the detection of their cleavage activities in a cell-free system. After ribozyme-encoding plasmids had been transfected into HSC-T6 cells, the effects of ribozymes on activated HSCs were evaluated through the analysis of proliferation, activation and collagen deposition of HSC-T6. The adenoviral vector expressing the ribozymes was constructed, and then delivered into rat models of hepatic fibrosis induced by carbon tetrachloride. RESULTS: TGFbeta1 expression was efficiently down-regulated in activated HSCs by U1 snRNA chimeric ribozymes which possessed perfect cleavage activity in a cell-free system. Further studies demonstrated that U1 snRNA chimeric ribozymes inhibited the synthesis of collagen I, reduced deposition of collagen I, suppressed BrdU incorporation, but had no effect on desmin and alpha-SMA expression in transfected HSC-T6 cells. Histological analysis demonstrated that the adenoviral vector expressing ribozyme (Rz803) could alleviate fibrotic pathology in rats treated with carbon tetrachloride. CONCLUSIONS: The anti-TGFbeta1 ribozymes could reverse the character of activated HSCs in vitro and improve fibrotic pathology in vivo. It indicated that TGFbeta1 could be considered as a novel candidate for a therapeutic agent against hepatic fibrosis.  相似文献   

3.
This study investigated the pro-fibrogenic role of high mobility group box 1 (HMGB1) peptides in liver fibrogenesis. An animal model of carbon tetrachloride (CCl4)-induced liver fibrosis was used to examine the serum HMGB1 levels and its intrahepatic distribution. The increased serum HMGB1 levels were positively correlated with elevation of transforming growth factor-β1 (TGF-β1) and collagen deposition during fibrogenesis. The cytoplasmic distribution of HMGB1 was noted in the parenchymal hepatocytes of fibrotic livers. In vitro studies confirmed that exposure to hydrogen peroxide and CCl4 induced an intracellular mobilization and extracellular release of nuclear HMGB1 peptides in clone-9 and primary hepatocytes, respectively. An uptake of exogenous HMGB1 by hepatic stellate cells (HSCs) T6 cells indicated a possible paracrine action of hepatocytes on HSCs. Moreover, HMGB1 dose-dependently stimulated HSC proliferation, up-regulated de novo synthesis of collagen type I and α-smooth muscle actin (α-SMA), and triggered Smad2 phosphorylation and its nuclear translocation through a TGF-β1-independent mechanism. Blockade with neutralizing antibodies and gene silencing demonstrated the involvement of the receptor for advanced glycation end-products (RAGE), but not toll-like receptor 4, in cellular uptake of HMGB1 and the HMGB1-mediated Smad2 and ERK1/2 phosphorylation as well as α-SMA up-regulation in HSC-T6 cells. Furthermore, anti-RAGE treatment significantly ameliorated CCl4-induced liver fibrosis. In conclusion, the nuclear HMGB1 peptides released from parenchymal hepatocytes during liver injuries may directly activate HSCs through stimulating HSC proliferation and transformation, eventually leading to the fibrotic changes of livers. Blockade of HMGB1/RAGE signaling cascade may constitute a therapeutic strategy for treatment of liver fibrosis.  相似文献   

4.
目的:观测育阴软肝颗粒剂对大鼠肝纤维化模型的防治作用及对转化生长因子-β1(TGF-β1)表达的影响。方法:将Wistar大鼠分为6组(n=10),注射四氯化碳、饲以高脂饲料并饮用20%乙醇6周复制肝纤维化大鼠模型,经6.2~24.8 g/kg育阴软肝颗粒剂干预(qd)6周后,测定肝纤维化大鼠血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)活性、透明质酸(HA)、Ⅲ型前胶原(PCⅢ)、Ⅳ型胶原(C-Ⅳ)及板层素(LN)含量,观测肝组织病理学及肝组织TGF-β1表达的变化,对育阴软肝颗粒剂防治肝纤维作用及机制进行研究。结果:实验第7周,模型组大鼠肝组织出现明显的纤维化病变(P<0.01);与模型组比较,6.2~24.8g/kg的育阴软肝颗粒剂能明显降低肝指数以及血清ALT、AST活性与HA、PCⅢ、C-Ⅳ、LN含量,缓解肝组织纤维化病理变化,抑制纤维化肝组织TGF-β1的表达(P<0.05,0.01)。结论:育阴软肝颗粒剂对多因素复制肝纤维化大鼠造模具有明显的治疗作用,而抑制TGF-β1的表达可能是其作用机制之一。  相似文献   

5.
In fibrotic livers, collagen producing hepatic stellate cells (HSC) represent a major target for antifibrotic therapies. We designed liposomes with surface-coupled mannose 6-phosphate (M6P) modified human serum albumin (HSA) to target HSC via the M6P receptor. In this study we determined the pharmacokinetics and target specificity of M6P-HSA-liposomes in a rat model of liver fibrosis. Ten minutes after injection of [(3)H]-M6P-HSA-liposomes 90% of the dose has cleared the circulation. The blood elimination of these liposomes was counteracted by free M6P-HSA and polyinosinic acid, a competitive inhibitor of scavenger receptors. The M6P-HSA-liposomes accumulated in HSC. However, also Kupffer cells and endothelial cells contributed to the uptake of M6P-HSA-liposomes in the fibrotic livers. Polyinosinic acid inhibited the accumulation of the liposomes in Kupffer cells and liver endothelial cells, but not in HSC. PCR analysis revealed that cultured HSC express scavenger receptors. This was confirmed by Western blotting, although activation of HSC diminishes scavenger receptor protein expression. In conclusion, in a rat model for liver fibrosis M6P-HSA-liposomes can be efficiently targeted to non-parenchymal cells, including HSC. M6P receptors and scavenger receptors are involved in the cellular recognition of these liposomes, allowing multiple pharmacological interference in different pathways involved in the fibrosis.  相似文献   

6.
In fibrotic livers, collagen producing hepatic stellate cells (HSC) represent a major target for antifibrotic therapies. We designed liposomes with surface-coupled mannose 6-phosphate (M6P) modified human serum albumin (HSA) to target HSC via the M6P receptor. In this study we determined the pharmacokinetics and target specificity of M6P-HSA-liposomes in a rat model of liver fibrosis. Ten minutes after injection of [3H]-M6P-HSA-liposomes 90% of the dose has cleared the circulation. The blood elimination of these liposomes was counteracted by free M6P-HSA and polyinosinic acid, a competitive inhibitor of scavenger receptors. The M6P-HSA-liposomes accumulated in HSC. However, also Kupffer cells and endothelial cells contributed to the uptake of M6P-HSA-liposomes in the fibrotic livers. Polyinosinic acid inhibited the accumulation of the liposomes in Kupffer cells and liver endothelial cells, but not in HSC. PCR analysis revealed that cultured HSC express scavenger receptors. This was confirmed by Western blotting, although activation of HSC diminishes scavenger receptor protein expression. In conclusion, in a rat model for liver fibrosis M6P-HSA-liposomes can be efficiently targeted to non-parenchymal cells, including HSC. M6P receptors and scavenger receptors are involved in the cellular recognition of these liposomes, allowing multiple pharmacological interference in different pathways involved in the fibrosis.  相似文献   

7.
Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-β1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague–Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-β1 siRNA 0.125 mg/kg treatment group, TGF-β1 siRNA 0.25 mg/kg treatment group and TGF-β1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin–Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-β1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-β1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-β1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-β1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-β1 siRNA negative control group and the TGF-β1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-β1, type I collagen and type III collagen (P < 0.01). Conclusions: Using siRNA to target TGF-β1 can inhibit the expression of TGF-β1 and attenuate rat hepatic fibrosis induced by a high-fat diet and CCL4. A possible mechanism is through the down-regulation of TGF-β1 expression, which could inhibit HSC activation, as well as the proliferation and collagen production of collagen reducing, so that collagen deposition in the liver is reduced.  相似文献   

8.
Shugan-Huayu powder (SHP) has been administered to outpatients with chronic liver disease without clear anti-fibrosis mechanism. To investigate the anti-fibrotic effects of SHP on liver fibrosis in a rat model and in hepatic stellate cells (HSCs) in vitro, rats were gavaged with CCl4 at 1.0 g/kg body weight twice a week for 8 weeks to induce liver fibrosis and the rats were randomly assigned to one of the three groups: -CCl4 alone, low-dose SHP and high-dose SHP. SHP was given by gavages 5 times a week for 8 weeks. Serum, livers and HSCs were assayed for serology, pathology, western blot, zymography and quantitative RT-PCR. Hepatic function improved as decreased serum aspartate aminotransferase and alanine aminotransferase, and collagen deposition and active HSCs were significantly reduced in CCl4-induced liver by SHP treatment. The expression of matrix metalloproteinase-2 (MMP-2) and transforming growth factor-beta1 (TGF-beta1) mRNA in fibrotic liver showed significant downregulation after SHP treatment. In vitro, inhibition of alpha-smooth muscle actin (alpha-SMA) expression and MMP-2 secretion of active HSCs were also noticed by SHP treatment. SHP has an antifibrotic effect on CCl4-induced liver fibrosis in rats. Anti-fibrotic mechanisms were probably inhibiting activation of HSCs and decreased expression of MMP-2 and TGF-beta1.  相似文献   

9.
10.
11.
12.
13.
Recent studies showed that the function of some amino acids is not only nutritional but also pharmacological. However, the effects of amino acids on liver fibrosis and hepatic stellate cell (HSC) remain unclear. In this research, as a result of screening of amino acids using liver fibrosis induced by DMN administration, L-cysteine was selected as a suppressor of liver fibrosis. Furthermore, the number of activated HSCs, which increased in the fibrotic liver after DMN administration, was decreased in L-cysteine-fed rats. Treatment of freshly isolated HSCs with L-cysteine resulted in inhibition of the increase in smooth muscle alpha-actin (alphaSMA) expression by HSCs and BrdU incorporation into the activated HSCs. These findings suggest that L-cysteine is effective against liver fibrosis. The mechanism of inhibition of fibrosis in the liver is surmized to be direct inhibition of activated HSC proliferation and HSC transformation by L-cysteine.  相似文献   

14.
目的猪血清法肝纤维化模型中,致纤维化因子停止作用于肝脏后α-SMA、TIMP-1阳性HSCs表型与组织中I型胶原表达的相关性。方法猪血清10周法制作大鼠肝纤维化模型,于造模6周、10周、14周和20周,免疫组织化学观察α-SMA、I型胶原,肝组织原位杂交法检测TIMP-1阳性表型HSCs在肝组织中的分布,计算机图像分析系统测定阳性比率,SPSS11.0分析各参数在肝纤维化进程中相关性。结果α-SMA于造模第6周、10周即有表达,主要分布于汇管区血管或中央静脉内膜下。于造模第14周、20周时持续表达。TIMP-1于造成模第6周时,表达也限于汇管区血管和中央静脉内膜下。造模第10周、14周时阳性表达率明显增加,向肝组织内伸展,并持续维持高阳性表达至造模第20周。α-SMA和TIMP-1在造模过程中随肝纤维化的进程呈显著正相关(r=0.989,P=0.000),二者分别与Ⅰ型胶原呈显著正相关(r=0.893,P=0.000;r=0.923,P=0.000)。结论猪血清攻击法肝纤维化大鼠模型中,致纤维化因子启动肝纤维化进程,但不随致纤维化因子的终止而终止。所以,抗肝纤维化治疗成为治疗本病的关键。  相似文献   

15.
Tacrolimus (FK506) is a widely used immunosuppressive drug. Its effects on hepatic fibrosis have been controversial and attributed to immunosuppression. We show that in vitro FK506, inhibited synthesis of type I collagen polypeptides, without affecting expression of collagen mRNAs. In vivo, administration of FK506 at a dose of 4 mg/kg completely prevented development of alcohol/carbon tetrachloride induced liver fibrosis in rats. Activation of hepatic stellate cells (HSCs) was absent in the FK506 treated livers and expression of collagen α2(I) mRNA was at normal levels. Collagen α1(I) mRNA was increased in the FK506 treated livers, but this mRNA was not translated into α1(I) polypeptide. No significant inflammation was associated with the fibrosis model used. FK506 binding protein 3 (FKBP3) is one of cellular proteins which binds FK506 with high affinity. We discovered that FKBP3 interacts with LARP6 and LARP6 is the major regulator of translation and stability of collagen mRNAs. In the presence of FK506 the interaction between FKBP3 and LARP6 is weakened and so is the pull down of collagen mRNAs with FKBP3. We postulate that FK506 inactivates FKBP3 and that lack of interaction of LARP6 and FKBP3 results in aberrant translation of collagen mRNAs and prevention of fibrosis. This is the first report of such activity of FK506 and may renew the interest in using this drug to alleviate hepatic fibrosis.  相似文献   

16.
Liver fibrosis is characterized by an exacerbated accumulation of deposition of the extracellular matrix (ECM), and the activation of hepatic stellate cells (HSC) plays a pivotal role in the development of liver fibrosis. Periostin has been shown to regulate cell adhesion, proliferation, migration and apoptosis; however, the involvement of periostin and its role in transforming growth factor (TGF)‐β1‐induced HSC activation remains unclear. We used RT‐PCR and Western blot to evaluate the expression level of periostin in hepatic fibrosis tissues and HSCs, respectively. Cell proliferation was determined using the Cell Proliferation ELISA BrdU kit, cell cycle was analysed by flow cytometry. The expression of α‐smooth muscle actin (α‐SMA), collagen I, TGF‐β1, p‐Smad2 and p‐Smad3 were determined by western blot. Our study found that periostin was up‐regulated in liver fibrotic tissues and activated HSCs. In addition, siRNA‐periostin suppressed TGF‐β1‐induced HSC proliferation. The HSC transfected with siRNA‐periostin significantly inhibited TGF‐β1‐induced expression levels of α‐SMA and collagen I. Furthermore, TGF‐β1 stimulated the expression of periostin, and siRNA‐periostin attenuated TGF‐β1‐induced Smad2/3 activation in HSCs. These results suggest that periostin may function as a novel regulator to modulate HSC activation, potentially by promoting the TGF‐β1/Smad signalling pathway, and propose a strategy to target periostin for the treatment of liver fibrosis.  相似文献   

17.
18.
Sequence-specific triple helix formation with genomic DNA   总被引:1,自引:0,他引:1  
Ye Z  Guntaka RV  Mahato RI 《Biochemistry》2007,46(40):11240-11252
  相似文献   

19.
Proliferating hepatic stellate cells (HSCs) respond to liver damage by secreting collagens that form fibrous scar tissue, which can lead to cirrhosis if in appropriately regulated. Advancement of microRNA (miRNA) hepatic therapies has been hampered by difficulties in delivering miRNA to damaged tissue. However, exosomes secreted by adipose‐derived mesenchymal stem cells (ADSCs) can be exploited to deliver miRNAs to HSCs. ADSCs were engineered to overexpress miRNA‐181‐5p (miR‐181‐5p‐ADSCs) to selectively home exosomes to mouse hepatic stellate (HST‐T6) cells or a CCl4‐induced liver fibrosis murine model and compared with non‐targeting control Caenorhabditis elegans miR‐67 (cel‐miR‐67)‐ADSCs. In vitro analysis confirmed that the transfer of miR‐181‐5p from miR‐181‐5p‐ADSCs occurred via secreted exosomal uptake. Exosomes were visualized in HST‐T6 cells using cyc3‐labelled pre‐miRNA‐transfected ADSCs with/without the exosomal inhibitor, GW4869. The effects of miRNA‐181‐5p overexpression on the fibrosis associated STAT3/Bcl‐2/Beclin 1 pathway and components of the extracellular matrix were assessed. Exosomes from miR181‐5p‐ADSCs down‐regulated Stat3 and Bcl‐2 and activated autophagy in the HST‐T6 cells. Furthermore, the up‐regulated expression of fibrotic genes in HST‐T6 cells induced by TGF‐β1 was repressed following the addition of isolated miR181‐5p‐ADSC exosomes compared with miR‐67‐ADSCexosomes. Exosome therapy attenuated liver injury and significantly down‐regulated collagen I, vimentin, α‐SMA and fibronectin in liver, compared with controls. Taken together, the effective anti‐fibrotic function of engineered ADSCs is able to selectively transfer miR‐181‐5p to damaged liver cells and will pave the way for the use of exosome‐ADSCs for therapeutic delivery of miRNA targeting liver disease.  相似文献   

20.
目的 探讨护肝片对中、晚期纤维化大鼠肝组织肝星状细胞(HSC)的活化与增殖及转化生长因子-β1(TGF-β1)及其工型受体(TβRⅠ)表达的影响。方法 采用12.5%CCh诱导的大鼠肝纤维化模型,自造模之日起,大鼠分组灌胃给药(护肝片921mg·kg^-1)或溶媒,每日一次,直至8或13周末,分别处死动物,取左叶肝组织石蜡包埋,制作组织芯片,免疫组化S-P法检测大鼠肝组织α-平滑肌肌动蛋白(α-SMA)、TGF-β1及TβRⅠ蛋白的表达,并用Meta Morph图像分析系统计数α-SMA阳性细胞数、对TGF-β1。及TβRⅠ蛋白表达量进行定量分析。结果 1.模型复制8周和13周,模型组的肝损伤及其纤维化分级均明显高于正常组(P〈0.01),护肝片组的肝损伤及其纤维化分级均轻于模型组。2.模型复制8周和13周,模型组活化的HSC(即α-SMA阳性细胞)数量较正常组明显增多、TGF-β1及TβRⅠ蛋白的表达较正常组明显增强(P〈0.01);3.护肝片显著抑制8、13周纤维化肝组织HSC的活化与增殖和TGF-β1及TβRⅠ蛋白的表达(P〈0.01)。结论 抑制HSC的活化与增殖和TGF-β1及TβRⅠ的表达可能是护肝片抗肝纤维化作用的靶点之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号