首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FLC gene product is an inhibitor of flowering in Arabidopsis. FLC homologs in Brassica species are thought to control vernalization. We cloned four FLC homologs (BoFLCs) from Brassica oleracea. Three of these, BoFLC1, BoFLC3 and BoFLC5, have been previously characterized. The fourth novel sequence displayed 98% sequence homology to the previously identified gene BoFLC4, but also showed 91% homology to BrFLC2 from Brassica rapa. Phylogenetic analysis showed that this clone belongs to the FLC2 clade. Therefore, we designated this gene BoFLC2. Based on the segregation of RFLP, SRAP, CAPS, SSR and AFLP loci, a detailed linkage map of B. oleracea was constructed in the F2 progeny obtained from a cross of B. oleracea cv. Green Comet (broccoli; non-vernalization type) and B. oleracea cv. Reiho (cabbage; vernalization type), which covered 540 cM, 9 major linkage groups. Six quantitative trait loci (QTL) controlling flowering time were detected. BoFLC1, BoFLC3 and BoFLC5 were not linked to the QTLs controlling flowering time. However, the largest QTL effect was located in the region where BoFLC2 was mapped. Genotyping of F2 plants at the BoFLC2 locus showed that most of the early flowering plants were homozygotes of BoFLC-GC, whereas most of the late- and non-flowering plants were homozygotes of BoFLC-Rei. The BoFLC2 homologs present in plants of the non-vernalization type were non-functional, due to a frameshift in exon 4. Moreover, duplications and deletions of BoFLC2 were detected in broccoli and a rapid cycling line, respectively. These results suggest that BoFLC2 contributes to the control of flowering time in B. oleracea.  相似文献   

2.
Floral organ identity B class genes are generally recognized as being required for development of petals and stamens in angiosperm flowers. Spinach flowers are distinguished in their complete absence of petals in both sexes, and the absence of a developed stamen whorl in female flowers. As such, we hypothesized that differential expression of B class floral identity genes is integral to the sexual dimorphism in spinach flowers. We isolated two spinach orthologs of Arabidopsis B class genes by 3 and 5 RACE. Homology assignments were tested by comparisons of percent amino acid identities, searches for diagnostic consensus amino acid residues, conserved motifs, and phylogenetic groupings. In situ hybridization studies demonstrate that both spinach B class genes are expressed throughout the male floral meristem in early stages, and continue to be expressed in sepal primordia in reduced amounts at later stages of development. They are also highly expressed in the third whorl primordia when they arise and continue to be expressed in these tissues through the development of mature anthers. In contrast, neither gene can be detected in any stage in female flowers by in situ analyses, although northern blot experiments indicate low levels of SpAP3 within the inflorescence. The early, strong expressions of both B class floral identity genes in male floral primordia and their absence in female flowers demonstrate that B class gene expression precedes the origination of third whorl primordia (stamen) in males and is associated with the establishment of sexual floral dimorphism as it initiates in the first (sepal) whorl. These observations suggest that regulation of B class floral identity genes has a role in the development of sexual dimorphism and dioecy in spinach rather than being a secondary result of organ abortion.Electronic Supplementary Material Supplementary material is available for this article at Edited by G. Jürgens  相似文献   

3.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

4.
Sather DN  York A  Pobursky KJ  Golenberg EM 《Planta》2005,222(2):284-292
Development in dioecious cultivated spinach, Spinacia oleracea, is distinguished by the absence of alternative reproductive organ primordia in male and female flowers. Given the highly derived floral developmental program in spinach, we wished to characterize a spinach C class floral identity gene and to determine the patterns of sequence evolution as well as compare the spatial and temporal expression patterns with those of AGAMOUS. The isolated cDNA sequence clusters phylogenetically within the AGAMOUS/FARINELLI C class clade. In comparison with the SLM1 sequence from the related Silene latifolia, amino acid replacements are highly conservative and non-randomly distributed, being predominantly found in hinge regions or on exposed surfaces of helices. The spinach gene (SpAGAMOUS) appears to be exclusively expressed in reproductive tissues and not in vegetative organs. Initial expression of SpAGAMOUS is similar in male and female floral primordia. However, upon initiation of the first whorl organs, SpAGAMOUS becomes restricted to meristemic regions from which the reproductive primordia will develop. This results in an early gender-specific pattern. Thus, the spinach C class gene is differentially expressed prior to reproductive organ development and is, at least, correlated with, if not directly involved in, the sexual dimorphism in spinach.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

5.
Plants differ in how much the response of net photosynthetic rate (P N) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10–35 °C for both species grown at 15, 21, and 27 °C were used to determine the T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (gm). In A. thaliana, the optimum T of P N at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and gm were also unaffected by growth T. There was no evidence of TPU limitation of P N in this species over the range of measurement conditions. In contrast, the optimum T of P N increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and gm, as well as the T at which TPU limited P N all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana.  相似文献   

6.
An early flowering mutant plant of Eucalyptus grandis with normal vegetative growth was found in a nursery in northern Brazil. This mutant plant flowers at approximately 90 days from germination. A cross between a wild-type (normal flowering) tree and the mutant was carried out, generating a progeny of 88 individuals where early flowering segregated in an approximate 1:1 ratio. A genome scan with 100 microsatellite markers distributed across the genome was carried out using bulk segregant analysis (BSA) on two contrasting bulks of 15 plants each. Linkages (LOD>3.0) with a major effect early flowering quantitative trait locus (QTL) were detected and confirmed by a full scale cosegregation analysis for markers EMBRA27, EMBRA60, EMBRA164, EMBRA158, EMBRA91, and EMBRA65. A localized linkage map involving the six loci and the early flowering QTL named Eucalyptus early flowering 1 (Eef1) was constructed belonging to linkage group #2 in the existing microsatellite reference map. The Eef1 locus was mapped between markers EMBRA27 and EMBRA164, with distances of 21.8 and 6.4 cM, respectively. In introgression experiments, these two markers could be successfully used with an expected precision of 98% to select plants carrying the Eef1 mutant allele, assuming no recombination interference in the genomic segment. Early flowering could be a very useful trait both in breeding as well as experimental genetics of Eucalyptus.  相似文献   

7.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

8.
9.
The genetic control and heritability of Agrobacterium tumefaciens susceptibility was investigated using a doubled haploid (DH) mapping population of Brassica oleracea and the associated RFLP map. Preliminary studies were carried out by analysis of an 8×8 diallel, for which the parental lines were selected to include a range of susceptibilities to A. tumefaciens. The variation observed within the diallel was attributed to both additive and dominant gene effects, with additive gene effects being more important. A broad sense heritability value of 0.95 suggested that 95% of the observed variation was due to genetic effects, with just 5% attributed to non-genetic or environmental effects. A high narrow-sense heritibility value of 0.79 suggested that 79% of this trait was controlled by additive gene effects and, therefore, the potential to introduce this trait into breeding material is high. Fifty-nine DH lines from the mapping population were screened for susceptibility towards A. tumefaciens. Variation in susceptibility was observed across the population. The results of the DH screen were entered into the mapping programme MAPQTL and a highly significant quantitative trait loci (QTL) associated with susceptibility to A. tumefaciens was identified on linkage group 09. The use of substitution lines covering this region confirmed the location of this QTL. This work shows that susceptibility to A. tumefaciens is a heritable trait, and the transfer of susceptibility into resistant lines is demonstrated. These findings may help to overcome genotype restrictions to genetic transformation.Communicated by G. Wenzel  相似文献   

10.
Zhu XY  Zhao M  Ma S  Ge YM  Zhang MF  Chen LP 《Plant cell reports》2007,26(10):1727-1732
The chimeras between tuber mustard (Brassica juncea) and red cabbage (B. oleracea) were artificially synthesized in our previous study. Adventitious shoots were induced from nodal segments and leaf discs of TCC (LI-LII-LIII, LI -the outmost layer of shoot apical meristem; LII -the middle layer; LIII -the innermost layer. T = Tuber mustard, C = Red cabbage) chimeras. The origin of the shoots was analyzed by histology and molecular biology. As a result, the frequency of adventitious shoot induction rose with the increase of BA in MS medium in the area of the nodes. However, there was no different induction frequency of adventitious shoots from nodal segment bases in media with different BA concentrations. Most adventitious shoots (clustered shoots) arising from the node area were TTT (Tuber mustard- Tuber mustard- Tuber mustard) and only 4 shoots were chimeras, which indicated that more shoots originated from LI than from LII and LIII. All shoots from nodal segment bases were CCC (Red cabbage-Red cabbage- Red cabbage), indicating that the shoots originated from LII or LII and LIII. There were significant differences in the regeneration rate in the margin of the leaf discs among the three combinations of BA and NAA. Most adventitious shoots from the margin of leaf discs were CCC but 2 out of 70 were chimeras, which indicated that more shoots originated from LII or LII and LIII than from LI. All chimeras obtained by regeneration were different from the original explant donor in type in the present study. The origin of the adventitious shoots varied with the site of origin on the donor plant, and could be multicellular and multihistogenic.  相似文献   

11.
The role of cytokinins in the promotion of flowering in the endangered species Kniphofia leucocephala Baijnath. was investigated using shoots maintained in culture for 3 years. The highest percentage flowering (65%) was obtained on media containing 20 μM benzyladenine (BA). The inclusion of isopentenyladenine and zeatin in the media also resulted in flowering, but these treatments were less effective than BA in inducing flowering. The effect of cytokinins on flowering was dose-dependent, with high concentrations of BA inhibiting flower formation. Treatments that resulted in rooting of explants produced no flowers. The resulting inflorescences in all treatments did not mature and senesced prematurely, even when gibberellic acid (GA3) was applied post-flower-emergence.  相似文献   

12.
Adventitious roots were induced from shoots and leaves of the chimera plant TCC (LI-LII-LIII = TCC; T = Tuber mustard, C = Red Cabbage), previously developed by in vitro grafting of tuber mustard (Brassica juncea) and red cabbage (B. oleracea). The regeneration frequency of adventitious roots from TCC shoots and leaf sections was markedly higher than that obtained from the parents TTT (tuber mustard) and CCC (red cabbage). Moreover, levels of α-naphthaleneacetic acid in the culture medium had lower effects on rooting efficiency of TCC chimeras compared to those of TTT and CCC. The number and fresh weight of adventitious roots per TCC shoot, 13.11 roots and 0.274 g, respectively, were also significantly higher than those of the parents. This demonstrated that replacing the histogenic LI layer (the outermost apical cell layer) with a different genotype might improve adventitious root induction capability of these vegetative tissues due to likely synergistic effects between LI and the other two histogenic layers, LII and LIII. Following polymerase chain reaction analysis and histological investigation, it was found that these adventitious roots originated from the LIII histogenic layer.  相似文献   

13.
A microspore culture protocol for Brassica oleracea of Indonesian origin (cv. ‘Kemeh’) has been successfully established. A high number of embryos formed with high microspore density i.e. 15 × 104 cells/ml. Embryo formation was improved by using flower buds (4.5–4.6 mm in length) as explants, a temperature treatment at 30.5°C for 48 h and then transfer to 25°C continuously until embryos formed. A total of 295 embryos were obtained from 189 buds, 30% of which were abnormal (i.e. with an abnormal cotyledon or lacking hypocotyls). All normal embryos that grew and survived, 165 in total, were successfully transferred to soil and grew well in plastic bags (15 cm in diameter) containing a mixture of burned-rice husk and organic manure (1:1, v/v).  相似文献   

14.
The tuberous stem of kohlrabi is an important quantitative trait, which affects its yield and quality. Genetic control of this trait has not yet been unveiled. To identify the QTLs controlling stem swelling of kohlrabi, a BC1 population of 92 plants was developed from a cross of broccoli DH line GCP04 and kohlrabi var. Seine. A wide range of variation in tuberous stem diameter was observed among the mapping populations. We constructed a genetic map of nine linkage groups (LGs) with different types of markers, spanning a total length of 913.5 cM with an average marker distance of 7.55 cM. Four significant QTLs for radial enlargement of kohlrabi stem, namely, REnBo1, REnBo2, REnBo3, and REnBo4 were detected on C02, C03, C05, and C09, respectively, and accounted for the phenotypic variation of 59% for the stem diameter and 55% for the qualitative grading of tuberous stem in classes. Then, we confirmed the stability of identified QTLs using BC1S1 populations derived from the BC1 plants having heterozygous alleles at the target QTL and homozygous kohlrabi alleles at the remaining QTLs. REnBo1and REnBo2 using 128 plants of BC168S1 and 94 plants of BC143S1, respectively, and REnBo3 and REnBo4 using 152 plants of BC157S1 were detected at the same positions as the respective QTLs of the BC1 population. Confirmation of QTLs in two successive generations indicates that the QTLs are persistent. The QTLs obtained in this study could be useful in marker-assisted selection of kohlrabi breeding, and to understand the genetic mechanisms of stem swelling and storage organ development in kohlrabi and other Brassica species.  相似文献   

15.
The gene pool of Brassica oleracea was enriched via intergeneric somatic hybridization between B. oleracea (2n = 18) and Matthiola incana (2n = 14). One hundred and eighteen plants were obtained from 96 calli. Only four plants (H1, H2, H3 and H4) showed an intermediate phenotype from the parents; among these, H1 and H3 arose from the same callus. Random amplified polymorphic DNA (RAPD), sequence-related amplified polymorphism (SRAP), and cytological analyses confirmed that H1 and H3 were hybrids. The nuclear DNA content of the regenerated plants was determined by flow cytometry. More than half of the plants contained a nuclear DNA content of 1.3 to 3.9 pg/cell, which was higher than the content of B. oleracea but lower than that of M. incana. H1 contained 4.89 ± 0.02 pg of DNA per cell, while H3 nuclear DNA content was estimated at 4.87 ± 0.06 pg/cell. Cytological study of the root-tip cells revealed that the majority of the H1 and H3 hybrid cells contained 28 chromosomes.  相似文献   

16.
Using a direct amplification of genomic DNA from two Brassica rapa forms, we obtained two homologs of the CONSTANS gene, which controls the photoperiodic induction of flowering in Arabidopsis plants. The cloned fragments of B. rapa genome were identified as members of the CONSTANS-LIKE1 class. By aligning the nucleotide sequences of the CONSTANS gene and its homologs, three classes, CONSTANS, CONSTANS-LIKE1, and CONSTANS-LIKE2, were distinctly discerned by their primary structure. The pattern of restriction fragment length polymorphisms (RFLP) of the CONSTANS homologs in B. carinata, B. juncea, B. napus, B. nigra, B. oleracea, and B. rapa were genome-specific; in addition, the CONSTANS homologs were classified by plant geographic origin, and we assume that such classification is related to plant photoperiodic response.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 274–281.Original Russian Text Copyright © 2005 by Martynov, Khavkin.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

17.
We evaluated the efficiency of callus induction and plantlet regeneration from hypocotyl explants of broccoli (Brassica oleracea var. italica). The cultivars were ‘Marathon’, ‘Greenbelt’, and ‘Shogun’. Transformation success was not affected by the presence of tobacco feeder-cell layers on the culture media. The frequency of shoot regeneration was greater from 10-d-old hypocotyls than from 14-d-old hypocotyls. Both ‘Marathon’ and ‘Greenbelt’ had higher potentials for tissue regeneration than did ‘Shogun’. We found that for transformation selection, the optimum concentration was either 50 mg/L kanamycin or 100 mg/L genetkin.  相似文献   

18.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

19.
20.
A dominant male sterility (DGMS) line 79-399-3, developed from a spontaneous mutation in Brassica oleracea var. capitata, has been widely used in production of hybrid cultivars in China. In this line, male sterility is controlled by a dominant gene Ms-cd1. In the present study, fine mapping of Ms-cd1 was conducted by screening a segregating population Ms79-07 with 2,028 individuals developed by four times backcrossing using a male sterile Brassica oleracea var. italica line harboring Ms-cd1 as donor and Brassica oleracea var. alboglabra as the recipient. Bulked segregation analysis (BSA) was performed for the BC4 population Ms79-07 using 26,417 SRAP primer SRAPs and 1,300 SSRs regarding of male sterility and fertility. A high-resolution map surrounding Ms-cd1 was constructed with 14 SRAPs and one SSR. The SSR marker 8C0909 was closely linked to the MS-cd1 gene with a distance of 2.06 cM. Fourteen SRAPs closely linked to the target gene were identified; the closest ones on each side were 0.18 cM and 2.16 cM from Ms-cd1. Three of these SRAPs were successfully converted to dominant SCAR markers with a distance to the Ms-cd1 gene of 0.18, 0.39 and 4.23 cM, respectively. BLAST analysis with these SCAR marker sequences identified a collinear genomic region about 600 kb in scaffold 000010 on chromosomeA10 in B. rapa and on chromosome 5 in A. thaliana. These results provide additional information for map-based cloning of the Ms-cd1 gene and will be helpful for marker-assisted selection (MAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号