首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium wilt is an increasingly serious disease of watermelon that reduces crop productivity. Changes in microorganism populations and bacterial and fungal community structures in rhizosphere soil of watermelon cultivars resistant or susceptible to Fusarium oxysporum f. sp. niveum were investigated using a plate culture method and PCR-DGGE analysis. Plate culture showed that populations of culturable bacteria and actinomycetes were more abundant in the rhizosphere of the resistant watermelon cultivar than the susceptible cultivar, but the fungi population had the opposite pattern. Populations of Penicillium , Fusarium , and Aspergillus were significantly lower in the resistant cultivar than the susceptible cultivar at the fruiting and uprooting stages (p?< 0.05). Pattern matching analysis generated the dendrogram of the DGGE results indicating the relatedness of the different resistant watermelon cultivars and their corresponding rhizosphere microbial communities. Further sequencing analysis of specific bands from DGGE profiles indicated that different groups of bacteria and fungi occurred in the rhizosphere of different watermelon cultivars. Our results demonstrated that plant genotype had a significant impact on soil microbial community structure, and the differences in the rhizosphere microbial community may contribute to the differences in resistance to F. oxysporum f. sp. niveum.  相似文献   

2.
The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.  相似文献   

3.
在温室盆栽条件下研究了丛枝菌根(Arbuscular Mycorrhiza, AM)真菌Glomus versiforme和西瓜枯萎镰刀菌Fusarium oxysporum f.sp. niveum对西瓜根系中过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、β-1,3-葡聚糖酶和几丁质酶活性的影响。结果表明,接种AM真菌的西瓜根系中4种酶的活性均高于对照,先接种G. versiforme,后接种F. oxysporum f.sp. niveum处理的4种酶的活性均高于只接种F. oxysporum f.sp. niveum 的处理,且酶的活性峰值出现较早。表明接种G. versiforme 能预先诱导这4种酶的产生,提高其活性,从而提高西瓜对F. oxysporum f.sp. niveum侵染的抗性。接种G. versiforme的感枯萎病西瓜品种“郑杂5号”酶的增加幅度大于抗病品种“京欣1号”的接种处理,说明G. versiforme对提高感病西瓜品种酶活性的作用更大。  相似文献   

4.
The vascular colonization of cotton plants by Fusarium oxysporum f. sp. vasinfectum was determined by examining growth of the fungus from free-hand cross sections taken from 0 to six days after inoculation at various distances above the points of root inoculation. Fungal spread in both longitudinal and lateral directions in the susceptible cultivar Rowden was evident four days after inoculation, whereas fungal spread in the resistant cultivar Seabrook Sea Island was restricted. The quantity of viable fungus in infected tissues was determined from macerated tissues plated on Czapek- Dox agar. The colony counts declined within six days after inoculation in resistant Seabrook Sea Island, but not in susceptible Rowden, implying that an inhibition of fungal growth in vascular tissues occurred in resistant Seabrook Sea Island. This inhibition could contribute to the restriction of fungal spread and thus be a factor in the resistance of cotton plants to F. oxysporum f. sp. vasinfectum .  相似文献   

5.
应用PCR-RFLP和巢式PCR检测黄瓜尖镰孢菌   总被引:1,自引:0,他引:1  
以3株黄瓜尖镰孢菌(Fusarium oxysporum f.sp.cucumarinum)、23株镰孢菌属(Fusariumspp.)真菌和分离自土壤的20株真菌、6株细菌和7株放线菌为材料,采用化学裂解法提取总DNA,进行PCR-RFLP和巢式PCR检测,试验证明PCR-RFLP程序不能完全区分Fusarium属内不同种,而巢式PCR对黄瓜尖镰孢菌具有特异性.运用优化的PCR-RFLP和巢式PCR检测程序对染病黄瓜组织进行了检测,结果表明,两种方法均可在接种发病早期(未显症时)检测出黄瓜枯萎病菌,PCR-RFLP在感病品种接种后3d即可检测到病原菌,而巢式PCR在接种后5d才能检测到病原菌.  相似文献   

6.
Fusarium oxysporum f. sp. melonis is a highly specialized fungus that attacks the root system of melon (Cucumis melo L.). In this work the presence of a class III chitinase was examined by immunological techniques in the root and stem base of a susceptible (cv. Galia) and a resistant (cv. Bredor) melon during the infection process. By immunolocalization it was not possible to detect the constitutive presence of class III chitinase in any of the cultivars. However, the immunolabelling appeared in the root tissues of both cultivars as a consequence of wounding and of infection by F. oxysporum f. sp. melonis. Distinct patterns of chitinase detection were observed in the roots of the two cultivars as the infection progressed. Furthermore, by western blotting distinct class III chitinase isoforms were detected, which responded differently to the F. oxysporum f. sp. melonis infection. Our results strongly indicate that a relationship exists between class III chitinase and melon resistance to Fusarium infection, and that the resistance is associated with certain isoforms of this enzyme.  相似文献   

7.
A kaempferide triglycoside has been found as a constitutive component in an uninfected carnation (Dianthus caryophyllus) of the cultivar Novada. The chemical structure has been determined mainly by the use of spectroscopic methods, including 2D NMR experiments. It showed a strong activity in restricting fungal parasite development, which could contribute to the known ability of carnation cv. Novada to resist to Fusarium oxysporum f. sp. dianthi infection.  相似文献   

8.
The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins.  相似文献   

9.
A group of differential tomato lines was used to identify the races of Fusarium oxysporum f. sp. lycopersici in Zhejiang, China. Marmande verte carries no resistant genes and Marporum carries gene I-1. Both lines Motelle and Mogeor have Gene I-1 and I-2. Tomato seedlings of eighteen days after sowing were inoculated with an isolate of Fusarium oxysporum f. sp. lycopersici, No. 98-2 and kept in a growth chamber. The seedlings were evaluated at fourteen days after inoculation. Results showed that Marmande verte and Marporum were severely infected by the pathogen and established as susceptible. Motelle and Mogeor were not infected and established as resistant. These results indicated that the isolate No. 98-2 represented the race 2 of Fusarium oxysporum f. sp. lycopersici and gene I-2 is necessary for obtaining resistance to this pathogen in the Zhejiang region.  相似文献   

10.
Fusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant–pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar.  相似文献   

11.
Xie D  Ma L  Samaj J  Xu C 《Plant cell reports》2011,30(8):1555-1569
Hydroxyproline-rich glycoproteins (HRGPs) play a defensive role in host–pathogen interactions. However, specific roles of individual HRGPs in plant defense against pathogen are poorly understood. Changes in extracellular distribution and abundance of individual cell wall HRGPs were investigated on root sections of two wax gourd (Benincasa hispida Cogn.) cultivars (Fusarium wilt resistant and susceptible, respectively), which were analyzed by immunolabelling with 20 monoclonal antibodies recognizing different epitopes of extensins and arabinogalactan proteins (AGPs) after being inoculated with Fusarium oxysporum f. sp. Benincasae or treated with fusaric acid (FA). These analyses revealed the following: (1) The levels of JIM11 and JIM20 interacting extensins were higher in the resistant cultivar. Either treatment caused a dramatic decrease in signal in both cultivars, but some new signal appeared in the rhizodermis. (2) The AGPs or rhamnogalacturonan containing CCRCM7-epitope were enhanced in the resistant cultivar, but not in the susceptible one by either treatment. (3) Either treatment caused a slight increase in the levels of the AGPs recognized by LM2 and JIM16, but there were no differences between two cultivars. (4) The MAC204 signal nearly disappeared after FA treatment, but this was not the case with pathogen attack. (5) The LM14 signal slightly decreased after both treatments in both cultivars, but a less decrease was observed with the resistant cultivar. These results indicate that the CCRCM7 epitope likely contributed to the resistance of wax gourd to this pathogen, and JIM11 and JIM20 interacting extensins as well as LM2, LM14, MAC204 and JIM16 interacting AGPs were involved in the host–pathogen interaction.  相似文献   

12.
An endophytic fungal isolate (Fs-K), identified as a Fusarium solani strain, was obtained from root tissues of tomato plants grown on a compost which suppressed soil and foliar pathogens. Strain Fs-K was able to colonize root tissues and subsequently protect plants against the root pathogen Fusarium oxysporum f.sp. radicis-lycopersici (FORL), and elicit induced systemic resistance against the tomato foliar pathogen Septoria lycopersici. Interestingly, attenuated expression of certain pathogenesis-related genes, i.e. PR5 and PR7, was detected in tomato roots inoculated with strain Fs-K compared with non-inoculated plants. The expression pattern of PR genes was either not affected or aberrant in leaves. A genetic approach, using mutant tomato plant lines, was used to determine the role of ethylene and jasmonic acid in the plant's response to infection by the soil-borne pathogen F. oxysporum f.sp. radicis-lycopersici (FORL), in the presence or absence of isolate Fs-K. Mutant tomato lines Never ripe (Nr) and epinastic (epi1), both impaired in ethylene-mediated plant responses, inoculated with FORL are not protected by isolate Fs-K, indicating that the ethylene signalling pathway is required for the mode of action used by the endophyte to confer resistance. On the contrary, def1 mutants, affected in jasmonate biosynthesis, show reduced susceptibility to FORL, in the presence Fs-K, which suggests that jasmonic acid is not essential for the mediation of biocontrol activity of isolate Fs-K.  相似文献   

13.

Background and aims

Strawberry (Fragaria x ananassa) is a high-value crop worldwide. Fusarium oxysporum f. sp. fragariae causes rapid wilting and death of strawberry plants and severe economic losses worldwide. To date, no studies have been conducted to determine colonisation of either susceptible or resistant strawberry plants by F. oxysporum f. sp. fragariae, or whether plant colonisation by F. oxysporum f. sp. fragariae differs between susceptible and resistant cultivars.

Methods

Colonisation of strawberry plants by a pathogenic isolate of F. oxysporum f. sp. fragariae was examined both on the root surface and within root tissue of one resistant cv. Festival and one susceptible cv. Camarosa using light and scanning electron microscopy from 4?h to 7?d post inoculation (pi).

Results

Resistant cv. Festival significantly impeded the spore germination and penetration from 4 to 12 hpi and subsequent growth and colonisation by this pathogen until 7 dpi compared with susceptible cv. Camarosa. At 7 dpi, fungal colonisation in resistant cv. Festival remained mainly confined to the epidermal layer of the root, while in susceptible cv. Camarosa, hyphae not only had heavily colonised the cortical tissue throughout but had also colonised vascular tissues.

Conclusions

This study demonstrates for the first time that resistance of a strawberry cultivar to F. oxysporum f. sp. fragariae is a result of impedance of pathogen growth and colonisation both on the plant surface and within host tissues. Resistance mechanisms identified in this study will be of high value for breeding programmes in developing new disease-resistant cultivars to manage this serious strawberry disorder.  相似文献   

14.
The development of dry rot caused by Fusarium solani f. sp. eumartii was evaluated in susceptible (Huinkul) and resistant (Spunta) potato cultivars. Fungal proteolytic and polygalacturanase activities were measured at different days postinoculation either with the pathogenic F. solani f. sp. eumartii, isolate 3122 or with the non‐pathogenic F. solani, isolate 1042. After inoculation with the pathogenic fungus, proteolytic and polygalaturonase activities were higher in the susceptible than in the resistant cultivar. In addition, we found a correlation between the levels of proteolytic activity detected in the intercellular washing fluids with the size of the lesion area caused by F. solani f. sp. eumartii in Huinkul tubers. The action of the proteolytic activity over cell wall proteins of both potato cultivars was assayed. An extracellular potato protein with homology to proteinase inhibitors of the Kunitz family was identified as a substrate of the proteolytic activity in the susceptible cultivar. A microscopic study revealed differences between the potato genotypes in the rate of response to infection by F. solani f. sp. eumartii. In addition, the cell wall alteration caused by F. solani f. sp. eumartii in cortical cells of susceptible tubers was evaluated. The data with respect to the correlation between the course of cyto‐ and biochemical events of the two host–pathogen interactions were discussed.  相似文献   

15.
Six commercial carnation cultivars were inoculated with Fusarium oxysporum f. sp. dianthi race 2, and grown under three different temperature regimes. Colonization by the pathogen and development of wilt symptoms were assessed at intervals up to 40 days. No symptoms and very little colonization were seen in any of the cultivars at 14–15°C. At a temperature of 22°C, the cultivars were clearly differentiated into three groups: those with resistance, partial resistance or susceptibility to the pathogen depending on the severity of symptoms and the extent of fungal colonization. Symptom severity was associated with the extent of colonization. This differentiation was not seen at 26°C, when all cultivars except the most resistant, cv.‘Carrier 929′, rapidly became diseased and died by 23 days after inoculation. ‘Carrier 929’ also showed some wilt symptoms at this temperature and was colonized throughout the height of the stem after 40 days. The pathogen caused disease at 26°C by a combination of vascular wilting and stem base and root rotting. Fungal colonization was assayed at 22°C by the dilution plate/homogenization method and by estimation of fungal chitin in a highly resistant (‘Carrier 929′) and in a highly susceptible (‘Red Baron’) cultivar. Both methods of assay gave similar results. In ‘Red Baron’, colonization increased slowly up to 20 days after inoculation then progressed rapidly, closely following the development of severe wilt symptoms. In ‘Carrier 929’, colonization remained very low. The low level of fungal biomass in ‘Carrier 929’ compared with ‘Red Baron’ indicated that the former cultivar showed true resistance as opposed to tolerance to the disease.  相似文献   

16.
Alcaligenes sp. strain MFA1 inhibits microconidial germination and germination-tube elongation of Fusarium oxysporum f.sp. dianthi and reduces the severity of fusarium wilt of carnation, presumably as a result of its production of a siderophore (G.Y. Yuen and M.N. Schroth. 1986. Phytopathology, 76:171-176). Derivative strains of MFA1, deficient in antagonism against F. oxysporum and in iron-limited growth, were obtained by Tn5 mutagenesis. The presence of a single Tn5 insertion in the genomic DNA of each derivative strain was detected by Southern analysis. Marker-exchange mutagenesis of strain MFA1 with DNA fragments, containing Tn5 and flanking sequences cloned from representative mutants, confirmed the association of single Tn5 insertions with the loss of antifungal activity and iron-independent growth of MFA1. These results are consistent with the involvement of siderophore biosynthesis by MFA1 in the inhibition of F. oxysporum.  相似文献   

17.
In 2002, gerbera plants (cv Kaliki) were observed exhibiting symptoms of a wilt in a soilless cultivation at Albenga area (Northern Italy). A similar wilt was also observed in the Sanremo area (Northern Italy) on cv Red Bull, Anedin and Gud finger grown in soil. The same observations were carried out in 2004 in SW Spain where gerbera plants showing wilt symptoms were observed in soilless crops. In all cases, the planting material originated from the Netherlands. Recently on the base of experimental trials F. oxysporum f. sp. chrysanthemi was recognized as the causal agent of wilts of gerbera both in Italy and in Spain. The aim of this experimental work was the evaluation of the resistance/susceptibility of available cultivars of chrysanthemum and gerbera to the Fusarium wilt. The pathogenicity of two isolates of Fusarium chrysanthemi obtained from infected gerbera (Gerbera jamesonii) and chrysanthemum (Chrysanthemum morifolium) plants was tested on several varieties both of gerbera and chrysanthemum in 2004-2006. In 2004 and 2005 respectively 54 and 30 cultivars of chrysanthemum and 57 and 55 of gerbera were tested, while in 2006 only 53 cultivars of gerbera were tested. The results showed that respectively in 2004 and 2005 67 and 33 % of chrysanthemum cultivars were highly resistant to F. chrysanthemi obtained from chrysanthemum while 57 and 53 % were highly resistant to strain isolated from gerbera. In 2004, 2005 and 2006 47, 65 and 75 % of gerbera cultivars were highly resistant to F. chrysanthemi obtained from chrysanthemum and 48, 56 and 72 % were highly resistant to the strain isolated from gerbera.  相似文献   

18.
蔓割病是我国南方薯区甘薯主要病害之一,本研究采用直接观察、显微和超微结构观测等方法,对高抗、中感和高感蔓割病的3个甘薯品种(高抗品种:金山57,中感品种:热薯1号,高感品种:新种花)接种蔓割病菌28 d植株充分发病后其茎基部细胞的侵染结构进行了观察。结果表明,在用清水作对照处理时,3个品种茎部组织的细胞形态和结构正常且完整,细胞代谢强。高抗品种金山57无论是接种组还是对照组,均未发现病原菌丝的存在,其茎下部、中部和上部细胞结构相对完整。中感品种热薯1号,蔓割病菌从其茎基部侵入后导致茎基部细胞破损坏死,而中部寄主-病原互作较为活跃和典型,造成养分运输受阻,茎基部接种后病原菌丝会沿着寄主茎部的维管束和其他组织一直向寄主的茎部末端蔓延,遭受侵染后的部位其细胞反应与高感品种新种花类似。高感品种新种花遭受蔓割病原菌侵染后,病原菌菌丝从茎基部新鲜剪口侵入后进入表皮细胞、皮层、维管束并在甘薯茎基部蔓延至中部、上部,直至寄主整株枯死,甘薯茎的木质部导管出现侵填体,质壁分离;与此同时,细胞壁的沉积物及乳突在病原菌的入侵处形成,各种无定型物质或纤丝构成的织网迅速包围入侵菌丝。  相似文献   

19.
The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to Fusarium wilt disease. Over the last 6 years, new insights into the molecular basis of these gene-for-gene interactions have been obtained. Highlights are the identification of three avirulence genes in F. oxysporum f. sp. lycopersici and the development of a molecular switch model for I-2, a nucleotide-binding and leucine-rich repeat-type resistance protein which mediates the recognition of the Avr2 protein. We summarize these findings here and present possible scenarios for the ongoing molecular arms race between tomato and F. oxysporum f. sp. lycopersici in both nature and agriculture.  相似文献   

20.
Plants produce a variety of secondary metabolites, many of which have antifungal activity. Saponins are plant glycosides that may provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici and other tomato pathogens produce extracellular enzymes known as tomatinases, which deglycosylate alpha-tomatine to yield less toxic derivatives. We have cloned and characterized the cDNA and genomic DNA encoding tomatinase from the vascular pathogen of tomato F. oxysporum f. sp. lycopersici. This gene encodes a protein (FoTom1) with no amino acid sequence homology to any previously described saponinase, including tomatinase from Septoria lycopersici. Although FoTom1 is related to family 10 glycosyl hydrolases, which include mainly xylanases, it has no detectable xylanase activity. We have overexpressed and purified the protein with a bacterial heterologous system. The purified enzyme is active and cleaves alpha-tomatine into the less toxic compounds tomatidine and lycotetraose. Tomatinase from F. oxysporum f. sp. lycopersici is encoded by a single gene whose expression is induced by alpha-tomatine. This expression is fully repressed in the presence of glucose, which is consistent with the presence of two putative CREA binding sites in the promoter region of the tomatinase gene. The tomatinase gene is expressed in planta in both roots and stems throughout the entire disease cycle of F. oxysporum f. sp. lycopersici.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号