首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technique is described by which neurons from mouse dorsal root ganglia can be dispersed in single-cell suspensions suitable for quantitative cytochemical analyses. The neurons were intact as controlled by trypan blue exclusion test, and the cell size distribution of the dispersed neurons corresponded to that of untreated, intact ganglia. Horseradish peroxidase and Evans blue applied to cut sciatic nerve, were transferred by somatopetal intra-axonal transport and accumulated in corresponding dorsal root ganglia neurons. The tracers were retained during the preparation of cell suspensions. The accumulation of the fluorescent tracer Evans blue was quantitated by cytofluorometric measurements on individual neurons.  相似文献   

2.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

3.
周围神经损伤后外源性GKNF对神经元的保护作用   总被引:1,自引:0,他引:1  
Chen ZY  Cao L  Lu CL  He C  Bao X 《生理学报》2000,52(4):295-300
采用硅管套接大鼠切断的坐骨神经模型,局部给予胶质细胞源性神经营养因子(GDNF),应用尼氏染色、酶组织化学染色方法,观察到外源性GDNF能减少脊髓修复侧前角运动神经元死亡的数目,降低脊髓前角运动神经元及脊神经节感觉神经元中胆碱酯酶(CHE)及酸性磷酸酶(ACP)变化的幅度。这表明外源性GDNF能保护周围神经切断后引起的神经元损伤.  相似文献   

4.
Following permanent transection of the adult rat sciatic nerve, sensory neuron apoptosis in the contributing L4 and L5 dorsal root ganglia can be observed for at least 6 months afterwards. To establish the profile of any sensory neuron apoptosis and loss over time when axonal regeneration is allowed, serial sections of L4 and L5 ganglia were examined and the neurons counted using a stereological technique 1, 2 and 3 months after crushing the right sciatic nerve at mid-thigh level. Our results show that an identical degree of sensory neuron loss and apoptosis occurs 1 month after crush as at 1 month after permanent transection. However, at 3 months no neurons undergoing apoptosis could be observed and no significant loss could be detected in the ipsilateral ganglia when compared to unoperated controls. One explanation was a neuronal replacement mechanism, which was investigated by administering bromodeoxyuridine to rats for 1 month after sciatic nerve transection or crush, prior to detection using immunohistochemistry on sections of their ganglia after 2 months. The presence of bromodeoxyuridine in the nuclei of occasional cells that would be counted as neurons on the basis of size and morphology indicates that a process of apparent neurogenesis may underlie the profile of sensory neuron loss after axotomy.  相似文献   

5.
周围神经损伤后外源性GDNF对神经元的保护作用   总被引:3,自引:0,他引:3  
采用硅管套接大鼠切断的坐骨神经模型 ,局部给予胶质细胞源性神经营养因子 (GDNF) ,应用尼氏染色、酶组织化学染色方法 ,观察到外源性GDNF能减少脊髓修复侧前角运动神经元死亡的数目 ,降低脊髓前角运动神经元及脊神经节感觉神经元中胆碱酯酶 (CHE)及酸性磷酸酶 (ACP)变化的幅度。这表明外源性GDNF能保护周围神经切断后引起的神经元损伤。  相似文献   

6.
FAST AXONAL TRANSPORT IN VITRO IN THE SCIATIC SYSTEM OF THE FROG   总被引:7,自引:3,他引:4  
Abstract— An in vitro system from the frog has been used to study fast axonal protein transport. The preparation, which was incubated in a specially made chamber, consisted of the gastrocnemius muscle, the sciatic nerve, the dorsal ganglia and part of the spinal cord. The parts were separated from each other by silicone grease barriers, which made it possible to follow the migration of labelled proteins from the spinal cord and ganglia, along the sciatic nerve, towards the muscle. About 80 per cent of transported proteins in the sciatic nerve originated from the dorsal spinal ganglia and moved antidromically at a rate of 60–90 mm per day at 18°C. The rapidly transported proteins were 90 per cent particulate and mainly associated with structures sedimenting in the microsomal fraction.
The effects of cyclohexirnide showed that the synthesis of rapidly moving proteins and their transport were separate processes. A low concentration of colchicine inhibited the transport when it was present in the medium surrounding the ganglia, but had no effect even at a higher concentration, when it was added to the nerve compartment. The presence of vinblastine at a low concentration in either of the two compartments completely arrested the protein transport. Likewise N-ethylmaleimide or p-chloromercuribenzene sulphonic acid in the nerve medium effectively blocked the fast transport. Results from experiments performed to test the possibility of disto-proximal flow and of transfer of proteins from the muscle to the nerve are discussed.  相似文献   

7.
1. The possibility of a neuro-protective effect of Xymedon as a pharmacological stimulator of nerve regeneration has been studied through Schwann cells (SCs) located in the potential area of regenerating nerve fibers' growth. 2. Xymedon was injected into the silicone chamber connecting the central and peripheral stumps of the rat's sciatic nerve. Carboxymethyl cellulose was used as a depositioned medium. 3. A 0.95% concentration of Xymedon increased the sciatic nerve functional index (SFI) values on the 14th, 21st and 28th day after the operation. By day 30, the total number of survival neurons in the L5 dorsal root ganglion (DRG) on the ipsilateral side increased with the following changes in Xymedon concentration: [see text] The number of surviving sensory neurons in the group with 0.95% Xymedon increased by 36% (p < 0.05) compared with animals with depositioned medium but Xymedon free. 4. It is suggested that the positive effects of Xymedon on neural regeneration and recovery of motor function support the potential use of Xymedon for the treatment of peripheral nerve injuries.  相似文献   

8.
目的:研究坐骨神经结扎损伤后疼痛受体P2X3在相应背根神经节(dorsal root ganglia,DRG)内的表达变化情况。方法:选取健康成年SD大鼠35只,建立右侧坐骨神经结扎损伤模型,采用免疫组织化学和图像分析技术检测相应L4-6DRG内P2X3的表达情况。结果:正常大鼠L4-6DRG内有大量P2X3免疫阳性神经元,坐骨神经结扎后3d P2X3表达即下调,3,7,14,21和28d其表达呈进行性下降趋势,各时间点与正常和假手术对照比较差异均有统计学意义(P<0.05)。结论:坐骨神经结扎后P2X3在L4-6DRG内表达明显下调,提示其可能在神经源性疼痛中发挥一定的作用。  相似文献   

9.
Damage to the sciatic nerve produces significant changes in the relative synthesis rates of some proteins in dorsal root ganglia and in the amounts of some fast axonally transported proteins in both the sciatic nerve and dorsal roots. We have now analyzed protein synthesis and axonal transport after cutting the other branch of dorsal root ganglia neurons, the dorsal roots. Two to three weeks after cutting the dorsal roots, [35S]methionine was used to label proteins in the dorsal root ganglia in vitro. Proteins synthesized in the dorsal root ganglia and transported along the sciatic nerve were analyzed on two-dimensional gels. All of the proteins previously observed to change after sciatic nerve damage were included in this study. No significant changes in proteins synthesized in dorsal root ganglia or rapidly transported along the sciatic nerve were detected. Axon regrowth from cut dorsal roots was observed by light and electron microscopy. Either the response to dorsal root damage is too small to be detected by our methods or changes in protein synthesis and fast axonal transport are not necessary for axon regrowth. When such changes do occur they may still aid in regrowth or be necessary for later stages in regeneration.  相似文献   

10.
We previously identified melanocortin receptor 4 (MC4R) in a search for genes associated with hypoglossal nerve regeneration. As melanocortins promote nerve regeneration after axonal injury, we investigated whether MC4R functions as a key receptor for peripheral nerve regeneration. In situ hybridization revealed that MC4R mRNA is induced in mouse hypoglossal motor neurons after axonal injury, whereas mRNAs for MC1R, MC2R, MC3R, and MC5R are not expressed either before or after nerve injury. This result was confirmed by RT-PCR. The level of MC4R mRNA expression increased significantly from day 3 after axotomy, reached a peak on day 5, and decreased to the control level on day 14. Similar induction of MC4R was observed in axotomized mouse dorsal root ganglia (DRGs). MC4R mRNA expression was induced exclusively among the MCR family in the L4-6 DRG after sciatic nerve injury. We further examined whether alpha-melanocortin stimulating hormone (alpha-MSH) promotes neurite elongation via MC4R. In mouse DRG neuron culture, alpha-MSH significantly promoted neurite outgrowth at a concentration of 10(-8) mol/L. This neurite-elongation effect was entirely inhibited by the addition of a selective MC4R blocker, JKC-363. Therefore, it is concluded that alpha-MSH could stimulate neurite elongation via MC4R in DRG neurons. The present results suggest that induction of MC4R is crucial for motor and sensory neurons to regenerate after axonal injury.  相似文献   

11.
Abstract: In the present study, neuronal and Schwann cell marker proteins were used to biochemically characterize the spatiotemporal progress of degeneration/regeneration in the silicone chamber model for nerve regeneration. Rat sciatic nerves were transected and the proximal and distal stumps were inserted into a bridging silicone chamber with a 10-mm interstump gap. Using dot immunobinding assays, S-100 protein and neuronal intermediate filament polypeptides were measured in different parts of the nerve 0–30 days after transaction. In the most proximal nerve segment, all the measured proteins were transiently increased. In the proximal and distal stumps adjacent to the transection, the studied proteins were decreased indicating degeneration of the nerve. Within the silicone chamber, the regenerating nerve expressed the Schwann cell S-100 protein already at 7 days, whereas the neurofilament polypeptides appeared later. These observations are corroborated by previous morphological studies. The biochemical method described provides a new and fast approach to the study of nerve regeneration.  相似文献   

12.
Non-specific cholinesterase (ChE) activity was studied histochemically at light and electron microscopical levels in dorsal root ganglia (DRG) of adult mice. The reaction staining and diameter of neuron cells perykaria were measured by using an image analysis system. The methodological approach enable to distinguish 8 subclasses of primary sensory neurons. The proportion of individual subclasses was mapping in three subsequent cervical, thoracal and lumbar DRG. The populations of small-sized neurons increased towards lumbar level similarly as medium and small neurons exhibiting high ChE reactivity. The variations in ChE-containing neurons among DRG from different area may reflect differences in modality-specific primary sensory neurons at each spinal cord level. In addition, the effect of 3 week sciatic nerve transection on the percentage of the subclasses in L4-L6 DRG has been investigated. The number of large neurons was reduced and a decrease of ChE reactivity in medium-size neurons was found in DRG on the operated side. Thus, the present results demonstrate a selective affectation of primary sensory neurons in mouse DRG by the peripheral nerve transection. Different amounts of the reaction product corresponding with ChE activity were found in the nuclear envelope and the cisternae of rough endoplasmic reticulum.  相似文献   

13.
Although autoradiography has demonstrated local incorporation of [3H]inositol into axonal phospholipids after intraneural injection, retrograde axonal transport of phosphatidylinositol has only been demonstrated after injection of lipid precursor into the cell body regions (L4 and L5 dorsal root ganglia) of the sciatic nerve. We now report the retrograde axonal transport of inositol phospholipids synthesized locally in the axons. Following microinjection of myo-[3H]inositol into the rat sciatic nerve (50-55 mm distal to L4 and L5 dorsal root ganglia), a time-dependent accumulation of 3H label occurred in the dorsal root ganglia ipsilateral to the injection site. The ratio of dpm present in the ipsilateral dorsal root ganglia to that in the contralateral dorsal root ganglia was not significantly different from unity between 2 and 8 h following isotope injection but increased to 10-12-fold between 24 and 72 h following precursor injection. By 24 h following precursor injection, the ipsilateral/contralateral ratio of the water-soluble label in the dorsal root ganglia still remained approximately 1.0, whereas the corresponding ratio in the chloroform/methanol-soluble fraction was approximately 20. The time course of appearance of labeled lipids in the ipsilateral dorsal root ganglia after injection of precursor into the nerve at various distances from the dorsal root ganglia indicated a transport rate of at least 5 mm/h. Accumulation of label in the dorsal root ganglia could be prevented by intraneural injection of colchicine or ligation of the sciatic nerve between the dorsal root ganglia and the isotope injection site. These results demonstrate that inositol phospholipids synthesized locally in the sciatic nerve are retrogradely transported back to the nerve cell bodies located in the dorsal root ganglia.  相似文献   

14.
1. Several lines of evidence suggest that cytokines and their receptors are initiators of changes in the activity of dorsal root ganglia (DRG) neurons, but their cellular distribution is still very limited or controversial. Therefore, the goal of present study was to investigate immunohistochemical distribution of TNF-alpha and TNF receptor-1 (TNFR1) proteins in the rat DRG following three types of nerve injury. 2. The unilateral sciatic and spinal nerve ligation as well as the sciatic nerve transection were used to induce changes in the distribution of TNF-alpha and TNFR1 proteins. The TNF-alpha and TNFR1 immunofluorescence was assessed in the L4-L5 DRG affected by nerve injury for 1 and 2 weeks, and compared with the contralateral ones and those removed from naive or sham-operated rats. A part of the sections was incubated for simultaneous immunostaining for TNF-alpha and ED-1. The immunofluorescence brightness was measured by image analysis system (LUCIA-G v4.21) to quantify immunostaining for TNF-alpha and TNFR1 in the naive, ipsi- and contralateral DRG following nerve injury. 3. The ipsilateral L4-L5 DRG and their contralateral counterparts of the rats operated for nerve injury displayed an increased immunofluorescence (IF) for TNF-alpha and TNFR1 when compared with DRG harvested from naive or sham-operated rats. The TNFalpha IF was increased bilaterally in the satellite glial cells (SGC) and contralaterally in the neuronal nuclei following sciatic and spinal nerve ligature. The neuronal bodies and their SGC exhibited bilaterally enhanced IF for TNF-alpha after sciatic nerve transection for 1 and 2 weeks. In addition, the affected DRG were invaded by ED-1 positive macrophages which displayed simultaneously TNFalpha IF. The ED-1 positive macrophages were frequently located near the neuronal bodies to occupy a position of the satellites. 4. The sciatic and spinal nerve ligature resulted in an increased TNFR1 IF in the neuronal bodies of both ipsi- and contralateral DRG. The sciatic nerve ligature for 1 week induced a rise in TNFR1 IF in the contralateral DRG neurons and their SGC to a higher level than in the ipsilateral ones. In contrast, the sciatic nerve ligature for 2 weeks caused a similar increase of TNFR1 IF in the neurons and their SGC of both ipsi- and contralateral DRG. The spinal nerve ligature or sciatic nerve transection resulted in an increased TNFR1 IF located at the surface of the ipsilateral DRG neurons, but dispersed IF in the contralateral ones. In addition, the SGC of the contralateral in contrast to ipsilateral DRG displayed a higher TNFR1 IF. 5. Our results suggest more sources of TNF-alpha protein in the ipsilateral and contralateral DRG following unilateral nerve injury including macrophages, SGC and primary sensory neurons. In addition, the SGC and macrophages, which became to be satellites, are well positioned to regulate activity of the DRG neurons by production of TNF-alpha molecules. Moreover, the different cellular distribution of TNFR1 in the ipsi- and contralateral DRG may reflect different pathways by which TNF-alpha effect on the primary sensory neurons can be mediated following nerve injury.  相似文献   

15.
Estrogen has a variety of neurotrophic effects mediated via different signaling cascades, including ERK and phosphatidylinositol 3-kinase (PI3K) pathways. In this study, we investigated effects of estrogen and inhibitors for ERK and PI3K applied directly onto the cut sciatic nerve on retrograde labeling of lumbar motoneurons. A mix of retrograde tracer (Fluorogold) and 17-estradiol, in combination with an antagonist for estrogen receptors ICI 182,780, an inhibitor of ERK1/2 pathway (U0126), an inhibitor of PI3K (LY-294002), or a protein synthesis inhibitor (cycloheximide), was applied to the proximal stump of the transected sciatic nerve for 24 h. Coapplication of Fluorogold with 17-estradiol produced a significant increase in the number of retrograde-labeled lumbar motoneurons, compared with Fluorogold alone. Estrogen potentiation of retrograde labeling was inhibited by application of ICI 182,780, U0126, LY-294002, and cycloheximide. Immunohistochemical analysis of the sciatic nerve, 24 h following crush injury, revealed accumulation of phospho-ERK in regenerating nerve fibers. The data suggest a role for estrogen, ERK, PI3K, and protein synthesis in the uptake and retrograde transport of Fluorogold. We propose that estrogen action in peripheral nerve fibers is mediated via the ERK and PI3K signaling pathways and is reliant on local protein synthesis. sciatic nerve; estrogen receptor; extracellular signal-regulated kinase  相似文献   

16.
During Wallerian degeneration of rat sciatic nerve, the expression of apolipoprotein E increases and apolipoprotein E-containing endoneurial lipoproteins accumulate in the distal nerve segment. In established primary cultures dissociated from dorsal root ganglia, Schwann cells and sensory neurons internalized rhodamine-labeled lipoproteins isolated from crushed rat sciatic nerve as well as low density lipoprotein (LDL) from human serum. The uptake of endoneurial lipoproteins could be inhibited by an excess of LDL or at low temperature (4 degrees C). After transection of nerve fibers in dorsal root ganglia explant cultures, the uptake of lipoproteins was markedly stimulated in Schwann cells that were in close proximity to degenerating neurites. A specific monoclonal antibody directed to the bovine LDL receptor (clone C7) was shown to cross-react with LDL receptor preparations of rat endoneurial cells. LDL receptor immunoreactivity was expressed by cell bodies and processes of cultured Schwann cells, sensory neurons, and fibroblasts from dorsal root ganglia. Incubation of Schwann cells and neurons with the LDL receptor antibody strongly inhibited the uptake of endoneurial lipoproteins. Our results provide direct evidence for the important role of the LDL receptor-mediated pathway to internalize endoneurial lipoproteins into Schwann cells and peripheral neurons required for reuse of cholesterol and other lipids in myelin and plasma membrane biogenesis during nerve repair.  相似文献   

17.
Unilateral sciatic nerve compression (SNC) or complete sciatic nerve transection (CSNT), both varying degrees of nerve injury, induced activation of STAT3 bilaterally in the dorsal root ganglia (DRG) neurons of lumbar (L4-L5) as well as cervical (C6–C8) spinal cord segments. STAT3 activation was by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and was followed by their nuclear translocation. This is the first evidence of STAT3(S727) activation together with the well-known activation of STAT3(Y705) in primary sensory neurons upon peripheral nerve injury. Bilateral activation of STAT3 in DRG neurons of spinal segments anatomically both associated as well as non-associated with the injured nerve indicates diffusion of STAT3 activation inducers along the spinal cord. Increased levels of IL-6 protein in the CSF following nerve injury as well as activation and nuclear translocation of STAT3 in DRG after intrathecal injection of IL-6 shows that this cytokine, released into the subarachnoid space can penetrate the DRG to activate STAT3. Previous results on increased bilateral IL-6 synthesis and the present manifestation of STAT3 activation in remote DRG following unilateral sciatic nerve injury may reflect a systemic reaction of the DRG neurons to nerve injury.  相似文献   

18.
Transection of a peripheral nerve in neonatal rats induces death of the axotomized neurons which may be due to either necrosis or apoptosis. In the present investigation, neuronal cell death in L5 dorsal root ganglion was evaluated after unilateral sciatic nerve transection in rats at 1, 3, 5, 7 and 10 days age. After 5 days, right (experimental) and left (control) dorsal root ganglia in all groups were removed, fixed, processed and embedded for either light or electron microscopy. Normal nucleoli were counted in paraffin embedded serial sections, and correction factors for split and multiple nucleoli were applied as well as the physical disector. The number of neurons in the right dorsal root ganglia, as compared with the controls, was significantly lower in all groups, and the percentage of the reduction at 1, 3, 5, 7 and 10 days was 32.4, 27.2, 23.8, 22.8 and 21.8% respectively. On the other hand, the results of neuronal counts using the disector method showed 34.0, 25.7, 20.2, 20.0 and 14.2% reduction in the number of neurons at 1, 3, 5, 7 and 10 days, respectively. The microscopic and ultrastructural results indicated that there were typical morphological changes similar to those of apoptosis, including condensed basophilic nuclei, formation of nuclear caps, cell shrinkage and apoptotic body formation. We concluded that there is an increase in apoptosis in dorsal root ganglia following sciatic nerve axotomy with the greatest neuronal loss on postnatal day 1.  相似文献   

19.
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain.  相似文献   

20.
The small intestine of the pig has been investigated for its topographical distribution of enteric neurons projecting to the cranial mesenteric ganglion, by using Fast Blue or Fluorogold as a retrogradely transported neuronal tracer. Contrary to the situation in small laboratory animals such as rat and guinea-pig, the intestinofugally projecting neurons in the porcine small intestine were not restricted to the myenteric plexus, but were observed in greater numbers in ganglia of the outer submucous plexus. The inner submucous plexus was devoid of labelled neurons. Retrogradely labelled neurons were mostly found, either singly or in small aggregates, in ganglia located within a narrow border on either side of the mesenteric attachment. For both nerve networks, their number increased from duodenum to ileum. All the retrogradely labelled neurons exhibited a multidendritic uniaxonal appearance. Some of them displayed type-III morphology and stained for serotonin. This study indicates that, in the pig, not only the myenteric plexus but also one submucous nerve network is involved in the afferent component of intestino-sympathico-intestinal reflex pathways. The finding that some of the morphologically defined type-III neurons participate in these reflexes is in accord with the earlier proposal that type-III neurons are supposed to fulfill an interneuronal role, whether intra- or extramurally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号