首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although increasingly used for DNA quantification, little is known of the dynamics of the 5' exonuclease assay, particularly in relation to amplicon length and mismatches at oligonucleotide binding sites. In this study we used seven assays targeting the c-myc proto-oncogene to examine the effects of sequence length, and report a marked reduction in efficiency with increasing fragment length. Three of the assays were further tested on 15 mammalian species to gauge the effect of sequence differences on performance. We show that the effects of probe and primer binding site mismatches are complex, with single point mutations often having little effect on assay performance, while multiple mismatches to the probe caused the greatest reduction in efficiency. The usefulness of the assays in predicting rates of 'allelic dropout' and successful polymerase chain reactions (PCRs) in microsatellite genotyping studies is supported, and we demonstrate that the use of a fragment more similar in size to typical microsatellites (190 bp) is no more informative than a shorter (81 bp) fragment. The assays designed for this study can be used directly for quantification of DNA from many mammalian species or, alternatively, information provided here can be used to design unique sequence-specific assays to maximise assay efficiency.  相似文献   

2.
Although increasingly used for DNA quantification, little is known of the dynamics of the 5′ exonuclease assay, particularly in relation to amplicon length and mismatches at oligonucleotide binding sites. In this study we used seven assays targeting the c-myc proto-oncogene to examine the effects of sequence length, and report a marked reduction in efficiency with increasing fragment length. Three of the assays were further tested on 15 mammalian species to gauge the effect of sequence differences on performance. We show that the effects of probe and primer binding site mismatches are complex, with single point mutations often having little effect on assay performance, while multiple mismatches to the probe caused the greatest reduction in efficiency. The usefulness of the assays in predicting rates of ‘allelic dropout’ and successful polymerase chain reactions (PCRs) in microsatellite genotyping studies is supported, and we demonstrate that the use of a fragment more similar in size to typical microsatellites (190 bp) is no more informative than a shorter (81 bp) fragment. The assays designed for this study can be used directly for quantification of DNA from many mammalian species or, alternatively, information provided here can be used to design unique sequence-specific assays to maximise assay efficiency.  相似文献   

3.
H Hakala  P Virta  H Salo    H Lnnberg 《Nucleic acids research》1998,26(24):5581-5588
Porous, uniformly sized (50 micrometer) glycidyl methacrylate/ethylene dimethacrylate particles (SINTEF) were used as a solid phase to construct a sandwich type hybridization assay that allowed simultaneous detection of up to six oligonucleotides from a single sample. The assay was based on categorization of the particles by two organic prompt fluorophores, viz. fluorescein and dansyl, and quantification of the oligonucleotide hybridization by time-resolved fluorometry. Accordingly, allele-specific oligodeoxyribonucleotide probes were assembled on the particles by conventional phosphoramidite strategy using a non-cleavable linker, and the category defining fluorescein and/or dansyl tagged building blocks were inserted in the 3'-terminal sequence. An oligonucleotide bearing a photoluminescent europium(III) chelate was hybridized to the complementary 3'-terminal sequence of the target oligonucleotide, and the resulting duplex was further hybridized to the particle-bound allele-specific probes via the 5'-terminal sequence of the target. After hybridization each individual particle was subjected to three different fluorescence intensity measurements. The intensity of the prompt fluorescence signals of fluorescein and dansyl defined the particle category, while the europium(III) chelate emission quantified the hybridization. The length of the complementary region between the target oligonucleotide and the particle-bound probe was optimized to achieve maximal selectivity. Furthermore, the kinetics of hybridization and the effect of the concentration of the target oligomer on the efficiency of hybridization were evaluated. By this approach the possible presence of a three base deletion (DeltaF508), point mutation (G542X) and point deletion (1078delT) related to cystic fibrosis could unequivocally be detected from a single sample.  相似文献   

4.
5.
A detection system based on the PCR has been developed for Escherichia coli strains which harbor the Shiga-like toxin genes. This quantitative detection system involves the 5'-->3' nuclease activity of Thermus aquaticus DNA polymerase, which cleaves an internal oligonucleotide probe that has been labeled with both a fluorescent reporter dye (6-carboxy-fluorescein [FAM]) and a quencher dye (6-carboxytetramethyl-rhodamine [TAMRA]). Parameters which affected the performance of the assay included primer probe distance, probe concentration, and probe target sequence homology. The optimized assay format includes two PCR primers that generate a 497-bp amplicon specific for the sltI gene with the fluorogenic probe located 19 bp from the upstream PCR primer. When the distance between the upstream PCR primer and the probe was reduced from 190 to 19 bp, delta RQ values increased from approximately 1.5 to 3.0. The delta RQ for Shiga-like toxin I probe 102 reached a maximum of 4.15 at concentrations between 25 and 50 nM. The assay is sensitive and can detect approximately 10 +/- 5 CFU per PCR. As few as 0.5 CFU of Shiga-like toxin I-producing E. coli per g could be detected in ground beef with only 12 h of enrichment in modified E. coli broth.  相似文献   

6.
We present a novel homogeneous in vitro assay format and apply it to the quantitative determination of the enzymatic activity of a tyrosine kinase. The assay employs a short peptidic substrate containing a single tyrosine and a single probe attached via a cysteine side chain. The structural flexibility of the peptide allows for the dynamic quenching of the probe by the nonphosphorylated tyrosine side chain. The probe responds with changes in its fluorescence lifetime depending on the phosphorylation state of the tyrosine. We use this effect to directly follow the enzymatic phosphorylation of the substrate, without having to resort to additional assay components such as an antibody against the phosphotyrosine. As an example for the application of this assay principle, we present results from the development of an assay for Abelson kinase (c-Abl) used for compound profiling. Adjustments in the peptide sequence would make this assay format suitable to a wide variety of other tyrosine kinases.  相似文献   

7.
A computer bank of 16 S rRNA bacterial sequences was searched to determine a consensus sequence expected to hybridize with DNA from a wide variety of bacteria. An oligonucleotide probe, named a panprobe, containing this sequence was used to assay the degree of lysis of bacterial colonies on filter paper heated in a microwave oven and subsequently treated with NaOH. As determined by colony hybridization with the panprobe, lysis was achieved for 51 of 59 different species of bacteria tested. DNA, isolated from the eight bacteria not detected by colony hybridization, did hybridize with the panprobe in slot blot hybridizations.  相似文献   

8.
The formation of DNA three-way junction (3WJ) structures has been utilised to develop a novel isothermal nucleic acid amplification assay (SMART) for the detection of specific DNA or RNA targets. The assay consists of two oligonucleotide probes that hybridise to a specific target sequence and, only then, to each other forming a 3WJ structure. One probe (template for the RNA signal) contains a non-functional single-stranded T7 RNA polymerase promoter sequence. This promoter sequence is made double-stranded (hence functional) by DNA polymerase, allowing T7 RNA polymerase to generate a target-dependent RNA signal which is measured by an enzyme-linked oligosorbent assay (ELOSA). The sequence of the RNA signal is always the same, regardless of the original target sequence. The SMART assay was successfully tested in model systems with several single-stranded synthetic targets, both DNA and RNA. The assay could also detect specific target sequences in both genomic DNA and total RNA from Escherichia coli. It was also possible to generate signal from E.coli samples without prior extraction of nucleic acid, showing that for some targets, sample purification may not be required. The assay is simple to perform and easily adaptable to different targets.  相似文献   

9.
The branched DNA hybridization assay has been improved by the inclusion of the novel nucleotides, isoC and isoG, in the amplification sequences to prevent non-specific hybridization. The novel isoC, isoG-containing amplification sequences have no detectable interaction with any natural DNA sequence. The control of non-specific hybridization in turn permits increased signal amplification. Addition of a 14 site preamplifier was found to increase the signal/noise ratio 8-fold. A set of 74 oligonucleotide probes was designed to the consensus HIV POL sequence. The detection limit of this new HIV branched DNA amplifier assay was approximately 50 molecules/ml. The assay was used to measure viral load in 87 plasma samples of HIV- infected patients on triple drug therapy whose RNA titers were <500 molecules/ml. In all 11 patients viral load eventually declined to below the detection limit with the new assay.  相似文献   

10.
Learish RD  Shultz J  Ho S  Bulleit RF 《BioTechniques》2002,33(6):1349-1353
Studies of telomere length have been carried out in diverse areas of research. However, current methods to measure telomeres are cumbersome and not amenable to high-throughput analyses. Using a coupled pyrophosphorolysis/trans-phosphorylation reaction, we have developed a novel assay to quantitate telomere sequence content in a single tube or 96-well format. The method uses a telomere-specific oligonucleotide probe to sample nanogram quantities of DNA without PCR amplification. Polymerase and kinase enzymes drive the production of ATP, which is then monitored with a luciferase enzyme reporter system. Using this approach, we demonstrated that the luminescent output was linear across a 100-fold range of DNA input, and the assay was sensitive to 0.4-1 ng DNA. A control probe reaction and a DNA quantitation reaction were also designed using the same pyrophosphorolysis technology to correct for background activity and normalize the signal against variations in DNA input, respectively. Finally, we show that the normalized luminescent signal generated by this new method is highly correlated to the telomere restriction fragment length for six human cell lines.  相似文献   

11.
We describe a non-isotopic, semi-automated method for large-scale multiplex analysis of nucleic acid sequences, using the cystic fibrosis transmembrane regulator (CFTR) gene as an example. Products of a multiplex oligonucleotide ligation assay (OLA) are resolved electrophoretically from one another and from unligated probes under denaturing conditions with fluorescence detection. One ligation probe for each OLA target carries a fluorescent tag, while the other probe carries an oligomeric non-nucleotide mobility modifier. Each OLA product has a unique electrophoretic mobility determined by the ligated oligonucleotides and the mobility-modifier oligomer arbitrarily assigned (coded) to its target. The mobility range for practical mobility modifiers is much wider than the accessible range from unmodified ligated oligonucleotides of practical length. Each mobility modifier is built from phosphoramidite monomers in a stepwise manner on its associated oligonucleotide using an automated synthesizer. The resulting mobility modifiers lower the probe-target duplex Tm by less than 3 degrees C and retard probe-target annealing by less than 50%, with negligible effect on OLA yield and specificity. This method is especially useful for allelic discrimination in highly polymorphic genes such as CFTR.  相似文献   

12.
13.
A fluorescent in situ hybridization assay has been developed for the detection of the human-pathogenic microsporidian, Encephalitozoon hellem in water samples using epifluorescence microscopy. The assay employs a 19-nucleotide species-specific 6-carboxyfluorescein-labeled oligonucleotide probe, HEL878F, designed to be complementary to the nucleic acid sequence 878-896, a highly variable segment of the 16S ribosomal RNA of E. hellem spores. The specificity of this probe for its ribosomal RNA target site was confirmed using RNA degradation, ribosomal RNA target site competition, and nucleotide base mismatch control probe assays. Furthermore, the specificity of the HEL878F oligonucleotide probe for E. hellem spores was established when it was evaluated on spores from all three species of the genus Encephalitozoon that had been seeded in reagent water and environmental water concentrates. The specificity of the HEL878F oligonucleotide probe was further corroborated when tested on algae, bacteria, and protozoa commonly found in environmental water. The study demonstrates the applicability of a fluorescent in situ hybridization assay using a species-specific fluorescent-labeled oligonucleotide probe for the detection of E. hellem spores in water samples.  相似文献   

14.
The activity of the telomerase ribonucleoprotein enzyme is essential for the maintenance of genome stability and normal cell development. Despite the biomedical importance of telomerase activity, detailed structural models for the enzyme remain to be established. Here we report a single-molecule assay for direct structural analysis of catalytically active telomerase enzymes. In this assay, oligonucleotide hybridization was used to probe the primer-extension activity of individual telomerase enzymes with single nucleotide sensitivity, allowing precise discrimination between inactive, active and processive enzyme binding events. FRET signals from enzyme molecules during the active and processive binding events were then used to determine the global organization of telomerase RNA within catalytically active holoenzymes. Using this assay, we have identified an active conformation of telomerase among a heterogeneous population of enzymes with distinct structures.  相似文献   

15.
Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.  相似文献   

16.
杨旭  肖潇  陈章  李会东  邓乐 《微生物学通报》2007,34(6):1169-1173
基于金黄色葡萄球菌16S rRNA基因序列,采用序列比对设计了一种茎环结构的寡聚核苷酸探针。探针的环序列即为金黄色葡萄球菌16S rRNA基因序列的其中一个片段,同其他菌种的16S rRNA基因序列误配2个以上的核苷酸,因此能高度专一、灵敏的检测金黄色葡萄球菌16S rRNA。根据分子信标技术和酶联免疫分析的原理,评估一个实验方法,即利用能构象转换的、固定化的茎环结构探针酶联检测靶核酸。由于探针的特异性加强,这个检测系统能有效的排除假阳性即不会出现误配一个核苷酸的情况。采用微量浓度测定分析,最低下限可检测出大约4ng的金葡球菌16SrRNA。这种方法的灵敏度比其他常规检测方法高出了至少一个数量级。  相似文献   

17.
An enzyme competitive hybridization assay was developed and validated for determination of mouse plasma concentrations of a 15mer antisense phosphodiester oligodeoxyribonucleotide and of two phosphorothioate analogs. Assays were performed in 96-well microtiter plates. The phosphodiester sense sequence was covalently bound to the microwells. The 5'-biotinylated antisense sequence was used as tracer. The principle of the assay involves competitive hybridization of tracer and antisense nucleotide to the solid phase-immobilized sense oligonucleotide. Solid phase- bound tracer oligonucleotide was assayed after reaction with a streptavidin-acetylcholinesterase conjugate, using the colorimetric method of Ellman. As in competitive enzyme immunoassays, coloration was inversely related to the amount of analyte initially present in the sample. The limit of quantification was 900 pM for phosphodiester antisense oligonucleotide using a 100 microl volume of plasma without extraction. Cross-reactivity was negligible after a four base deletion in either the 3'or 5'position. The assay was simple and sensitive, suitable for in vitro screening of oligonucleotide hybridization potency in biological fluids and for measuring the plasma pharmacokinetics of phosphorothioate and phosphodiester sequences.  相似文献   

18.
A novel endonuclease IV post-PCR genotyping system   总被引:1,自引:0,他引:1  
Here we describe a novel endonuclease IV (Endo IV) based assay utilizing a substrate that mimics the abasic lesions that normally occur in double-stranded DNA. The three component substrate is characterized by single-stranded DNA target, an oligonucleotide probe, separated from a helper oligonucleotide by a one base gap. The oligonucleotide probe contains a non-fluorescent quencher at the 5′ end and fluorophore attached to the 3′ end through a special rigid linker. Fluorescence of the oligonucleotide probe is efficiently quenched by the interaction of terminal dye and quencher when not hybridized. Upon hybridization of the oligonucleotide probe and helper probe to their complementary target, the phosphodiester linkage between the rigid linker and the 3′ end of the probe is efficiently cleaved, generating a fluorescent signal. In this study, the use of the Endo IV assay as a post-PCR amplification detection system is demonstrated. High sensitivity and specificity are illustrated using single nucleotide polymorphism detection.  相似文献   

19.
Vainrub A  Pettitt BM 《Biopolymers》2004,73(5):614-620
We present a theoretical model for typical microarray-based single nucleotide polymorphism (SNP) assay of small genomic DNA amount. We derived the adsorption isotherm expressing the on-array hybridization efficiency in terms of genomic target sequence and concentration, oligonucleotide probe sequence and surface density, hybridization buffer, and temperature. This isotherm correctly describes the surface probe density effects, the sensitivity peak, and the melting temperature depression, and is in accord with published experiments. We discuss optimization of parallel SNP genotyping. Our estimates show that SNP detection at a single temperature in aqueous hybridization buffer is restricted by DNA regions that differ by less than 20% in GC content. We predict that the variety of genotyped SNPs could be substantially extended using an assay design with high probe density and a large fraction of probes hybridized.  相似文献   

20.
Fluorescence is the favored signaling technology for molecular diagnoses. Fluorescence energy transfer-based methods are powerful homogeneous assay tools. A novel oligonucleotide probe, named MagiProbe, which is simple to use, is described, and information given about the duplex formed with a target. The probe internally has a fluorophore and an intercalator. Its fluorescence is quenched by the intercalator in the absence of a target sequence. On hybridization with a target sequence, the probe emits marked fluorescence due to the interference in quenching by intercalation. Furthermore, MagiProbe hybridized with a single-base mismatched target emits less fluorescence than with a perfect matched target. It therefore can detect a single base difference in a double-stranded form with a target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号