首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3′ UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3′ UTR of CG32425 mRNA mediates Nos‐dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3′ UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3′ UTR, we identified the region required for mRNA stabilization, which includes Nos‐binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development.  相似文献   

4.
PR domain zinc finger protein 14 (PRDM14) plays an essential role in the development of primordial germ cells (PGCs) in mice. However, its functions in avian species remain unclear. In the present study, we used CRISPR/Cas9 to edit the PRDM14 locus in chickens in order to demonstrate its importance in development. The eGFP gene was introduced into the PRDM14 locus of cultured chicken PGCs to knockout PRDM14 and label PGCs. Chimeric chickens were established by a direct injection of eGFP knocked‐in (gene‐trapped) PGCs into the blood vessels of Hamburger–Hamilton stages (HH‐stages) 13–16 chicken embryos. Gene‐trapped chickens were established by crossing a chimeric chicken with a wild‐type hen with very high efficiency. Heterozygous gene‐trapped chickens grew normally and SSEA‐1‐positive cells expressed eGFP during HH‐stages 13–30. These results indicated the specific expression of eGFP within circulating PGCs and gonadal PGCs. At the blastodermal stage, the ratio of homozygous gene‐trapped embryos obtained by crossing heterozygous gene‐trapped roosters and hens was almost normal; however, all embryos died soon afterward, suggesting the important roles of PRDM14 in chicken early development.  相似文献   

5.
The olfactory epithelium of two closely related species of snowtrout—Schizothoraichthys progastus McClelland andSchizothorax richardsonii Gray (Subfamily: Schizothoracinae. family-Cyprinidae, Teleostei), from a perennial glacier-fed river Mandakini of Garhwal hills was studied by employing transmission electron microscopic method The olfactory lamella comprises two epithelia—anterior and posterior, with a stroma sandwiched in between. Both are strartified. The anterior one is thicker than posterior. InSchizothoraichithys progastus, the sensory part of epithelium has two types of receptor cells—ciliated receptor cells and rod cells whilst inSchizothorax richardsonii, there arc three types of receptor cells—ciliated receptor cells, microvillous receptor cells and rod cells in addition to sustentacular cells, basal cells and mucous cells. While inhabiting similar hillstream habitat, the differential ecological niches, feeding habits etc., account for the presence of different receptor cell types in these species, It implies the possible diversification at cellular and physiological levels so as to minimize the competition by using varied olfactory cues.  相似文献   

6.
The morphology of the nephrons of the coelacanth Latimeria chalumnae was investigated by light microscopy. Each nephron is composed of a large renal corpuscle with well‐vascularized glomerulus, non‐ciliated neck segment, proximal convoluted tubule divided into distinct first and second segments, non‐ciliated intermediate segment, distal tubule, collecting tubule and collecting duct. The parietal layer of the Bowman's capsule of the renal corpuscle is composed of low cuboidal cells. The short non‐ciliated neck segment is lined by cuboidal epithelium. The first and second proximal segments display a prominent brush border and contain amorphous material in their lumen. The second proximal segment differs from the first segment in having taller columnar epithelium and a relatively narrow lumen. The intermediate segment is lined by non‐ciliated columnar epithelium and its lumen appears empty. The distal tubule is narrow in diameter and its cuboidal epithelium is devoid of intercalated cells. A unique feature of L. chalumnae is having binucleate cells in the tubule and collecting duct epithelium. The renal arteries have poorly developed tunica media and its cells contain granular material. The structure of L. chalumnae nephrons correlates well with their osmoregulatory function and resembles those of euryhaline teleosts.  相似文献   

7.
The fine structure of the epidermis and cuticle has been described for the oligochaete Aeolosoma bengalense. The epidermis is a pseudostratified epithelium and consists of the following cell types: ciliated and nonciliated supportive cells, pigment cells and associated satellite cells, mucous cells, basal cells, and ciliated non-supportive columnar cells. Overlying and restricted to the supportive cells is a delicate cuticle composed of: (a) a discontinuous layer of membrane-bounded surface particles; (b) a thin filamentous layer of moderate electron density just under the surface particles; (c) a thicker inner filamentous layer of low electron density. Digestion with pronase effectively removes the cuticle. This, together with the fact that it stains with alcian blue and ruthenium red, indicates that the cuticle contains an acid mucopolysaccharide. Regeneration of the cuticle, following pronase treatment, is marked by the elaboration of numerous microvilli by the supportive cells. Most of the microvilli are transitory and evidence supports a microvillar origin for the cuticular surface particles. The presence of cuticular surface particles may be a characteristic shared in common by all oligochaetes and, perhaps, some polychaetes.  相似文献   

8.
9.
Primordial germ cells (PGCs) arise in the early embryo and migrate toward the future gonad through species‐specific pathways. They are assumed to change their migration properties dependent on their own genetic program and/or environmental cues, though information concerning the developmental change in PGC motility is limited. First, we re‐examined the distribution of PGCs in the endodermal region of Xenopus embryos at various stages by using an antibody against Xenopus Daz‐like protein, and found four stages of migration, namely clustering, dispersing, directionally migrating and re‐aggregating. Next, we isolated living PGCs at each stage and directly examined their morphology and locomotive activity in cell cultures. PGCs at the clustering stage were round in shape with small blebs and showed little motility. PGCs in both the dispersing and the directionally migrating stages alternated between the locomotive phase with an elongated morphology and the pausing phase with a rugged morphology. The locomotive activity of the elongated PGCs was accompanied by the persistent formation of a large bleb at the leading front. The duration of the locomotive phase was shortened gradually with the transition from the dispersing stage to the directionally migrating stage. At the re‐aggregating stage, PGCs became round in shape and showed no motility. Thus, we directly showed that the locomotive activity of PGCs changes dynamically depending upon the migrating stage. We also showed that the locomotion and blebbing of the PGCs required F‐actin, myosin II activity and RhoA/Rho‐associated protein kinase (ROCK) signaling.  相似文献   

10.
Borisenko, I. and Ereskovsky, A.V. 2011. Tentacular apparatus ultrastructure in the larva of Bolinopsis infundibulum (Lobata: Ctenophora). —Acta Zoologica (Stockholm) 00 : 1–10. Most ctenophores have a tentacular apparatus, which plays some role in their feeding. Tentacle structure has been described in adults of only three ctenophore species, but the larval tentacles have remained completely unstudied. We made a light and electron microscopic study of the tentacular apparatus in the larvae of Bolinopsis infundibulum from the White Sea. The tentacular apparatus of B. infundibulum larvae consists of the tentacle proper and the tentacle root. The former contains terminally differentiated cells, while the latter contains stem cells and cells undergoing differentiation. The core of the tentacle is formed by myocytes, and its epidermis contains colloblasts (hunting cells), wall cells, degenerating cask cells, refractive vesicles, and ciliated sensory cells. Stem cells, colloblasts, and cask cells at various stages of differentiation and putative myocytes progenitors were revealed in the tentacle root. Two different populations of the stem cells in the tentacle root give rise to epidermal (colloblasts and cask cells) and mesogleal (myocytes) cell lines. Nervous elements, glandular cells, and basal lamina were not found. Step‐by‐step differentiation of colloblasts and cask cells is described.  相似文献   

11.
We investigated morphological differences in uterine epithelia of the reproductive cycle between two closely related viviparous skinks, Niveoscincus metallicus (lecithotrophic) and Niveoscincus ocellatus (placentotrophic), which have similar placental complexity but different degrees of placentotrophy. Scanning (SEM) and transmission electron microscopy (TEM) revealed that the uterine surface of non‐reproductive females of both species is mainly covered by ciliated cells. As vitellogenesis begins, the uterine epithelium consists of ciliated and non‐ciliated cells under a thin glycocalyx. Microvilli are greatly reduced at mid‐pregnancy, and the uterus differentiates into two structurally distinct regions: the chorioallantoic and the omphaloplacenta. At late stages of pregnancy, the uterine epithelium of chorioallantoic placenta in both species is further ridged, forming a knobbly uterine surface. The ultrastructural evidence between N. metallicus and N. ocellatus cannot strictly account for the distinct differences in their placentotrophy; as yet unexplored molecular nutrient transport mechanisms that are not reflected in uterine ultrastructure must play significant roles in nutrient transportation. Characteristics consistent with a plasma membrane transformation were confirmed in both species.  相似文献   

12.
This study describes the distribution and the coexpression of specific neurochemical markers in both neuroendocrine‐like cells (NEC‐like) and polymorphous granular cells (PGCs) that populate the mucociliated epithelium of the lung in the air‐breathing fish Polypterus senegalus, using confocal immunohistochemistry. Using confocal immunohistochemistry, we determined the coexpression of specific neurochemical markers. Colocalization studies showed that 5HT is coexpressed with calbindin and nNOS and choline acetyltransferase (ChAT) is coexpressed with nNOS in the PGCs. This study also shows for the first time the simultaneous occurrence of piscidin 1 and 5HT in the PGCs. The function of these cells being equivalent to ones found in fish gill subepithelial parenchyma is still not known. Due to the importance of piscidin 1 in local immune defence, more research is to be useful to understand a possible interaction of PGCs with immune response in the bichir lung. In fact, the capacity of PGCs to produce NO and other neuroactive substances found in immune cells of fish may represent a primitive form of immunoregulation of innate immunity and specifically antimicrobial function as NO induction and respiratory burst activity are correlated with immune response.  相似文献   

13.
We have studied the heart in three species of hagfish: Myxine glutinosa, Eptatretus stoutii, and Eptatretus cirrhatus and report about the morphology of the ventricle, the arterial connection and the ventral aorta. On the whole, the hagfish heart lacks outflow tract components, the ventricle and atrium adopt a dorso‐caudal rather than a ventro‐dorsal relationship, and the sinus venosus opens into the left side of the atrium. This may indicate a “defective” cardiac looping during embryogenesis. The ventral aorta is elongated in M. glutinosa and E. stoutii but sac‐like in E. cirrhatus. The ventricles are entirely trabeculated. The myocytes show a low myofibrillar content and junctional complexes formed by fascia adherens and desmosomes. Gap junctions could not be demonstrated. Myocardial cells in M. glutinosa contain numerous lipid droplets. These droplets are less numerous in E. stoutii and practically absent in E. cirrhatus, suggesting different metabolic requirements. Other cell types present in the ventricle are chromaffin cells and granular leukocytes that contain rod‐shaped granules. The ventricle‐aorta connection is guarded by a bicuspid valve with left and right, pocket‐like leaflets. The leaflets extend from the cranial end of the ventricle into the aorta but the junction is asymmetrical. This junction contains a ganglion‐like structure in E. cirrhatus. The ventral aorta shows endothelial, media, and adventitial layers. The media contains smooth muscle cells surrounded by dense bands formed by tightly‐packed extracellular filaments. In addition, a short number of elastic fibers are observed in M. glutinosa and E. stoutii. Cellular and extracellular elements are more loosely organized in the aorta of E. cirrhatus. The collagenous adventitia contains ganglion‐like cells in the three species. In the absence of nerves, chromaffin and ganglion‐like cells may control the activity of the myocardium and that of the aortic smooth muscle cells, respectively. J. Morphol. 277:326–340, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Primordial germ cells (PGCs) and somatic cells originate from postimplantation epiblast cells in mice. As pluripotency is lost upon differentiation of somatic lineages, a naive epigenome and the pluripotency network are re‐established during PGC development. Here we demonstrate that Prdm14 contributes not only to PGC specification, but also to naive pluripotency in embryonic stem (ES) cells by repressing the DNA methylation machinery and fibroblast growth factor (FGF) signalling. This indicates a critical role for Prdm14 in programming PGCs and promoting pluripotency in ES cells.  相似文献   

15.
Genome‐wide DNA demethylation, including the erasure of genome imprints, in primordial germ cells (PGCs) is a critical first step to creating a totipotent epigenome in the germ line. We show here that, contrary to the prevailing model emphasizing active DNA demethylation, imprint erasure in mouse PGCs occurs in a manner largely consistent with replication‐coupled passive DNA demethylation: PGCs erase imprints during their rapid cycling with little de novo or maintenance DNA methylation potential and no apparent major chromatin alterations. Our findings necessitate the re‐evaluation of and provide novel insights into the mechanism of genome‐wide DNA demethylation in PGCs.  相似文献   

16.
17.
Primordial germ cells (PGCs) in Xenopus embryo are specified in the endodermal cell mass and migrate dorsally toward the future gonads. The role of the signal mediated by Notch and Suppressor of Hairless [Su(H)] was analyzed on the migrating PGCs at the tailbud stage. X‐Notch‐1 and X‐Delta‐1 are expressed in the migrating PGCs and surrounding endodermal cells, whereas X‐Delta‐2 and X‐Serrate‐1 are expressed preferentially in the PGCs. Suppression and constitutive activation of the Notch/Su(H) signaling in the whole endoderm region or selectively in the PGCs resulted in an increase in ectopic PGCs located in lateral or ventral regions. Knocking down of the Notch ligands by morpholino oligonucleotides revealed that X‐Delta‐2 was indispensable for the correct PGC migration. The ectopic PGCs seemed to have lost their motility in the Notch/Su(H) signal‐manipulated embryos. Our results suggest that a cell‐to‐cell interaction via the Notch/Su(H) pathway has a significant role in the PGC migration by regulating cell motility.  相似文献   

18.
The structure of the olfactory organ in larvae and adults of the basal anuran Ascaphus truei was examined using light micrography, electron micrography, and resin casts of the nasal cavity. The larval olfactory organ consists of nonsensory anterior and posterior nasal tubes connected to a large, main olfactory cavity containing olfactory epithelium; the vomeronasal organ is a ventrolateral diverticulum of this cavity. A small patch of olfactory epithelium (the “epithelial band”) also is present in the preoral buccal cavity, anterolateral to the choana. The main olfactory epithelium and epithelial band have both microvillar and ciliated receptor cells, and both microvillar and ciliated supporting cells. The epithelial band also contains secretory ciliated supporting cells. The vomeronasal epithelium contains only microvillar receptor cells. After metamorphosis, the adult olfactory organ is divided into the three typical anuran olfactory chambers: the principal, middle, and inferior cavities. The anterior part of the principal cavity contains a “larval type” epithelium that has both microvillar and ciliated receptor cells and both microvillar and ciliated supporting cells, whereas the posterior part is lined with an “adult‐type” epithelium that has only ciliated receptor cells and microvillar supporting cells. The middle cavity is nonsensory. The vomeronasal epithelium of the inferior cavity resembles that of larvae but is distinguished by a novel type of microvillar cell. The presence of two distinct types of olfactory epithelium in the principal cavity of adult A. truei is unique among previously described anuran olfactory organs. A comparative review suggests that the anterior olfactory epithelium is homologous with the “recessus olfactorius” of other anurans and with the accessory nasal cavity of pipids and functions to detect water‐borne odorants. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
The morphology and fine structure of female Intoshia variabili, new combination for Rhopalura variabiliAlexandrov & Sljusarev, 1992, were studied with transmission electron microscopy. The body surface is covered with a 3-layered cuticula, under which is a layer of ciliated + non-ciliated cells arranged in alternating rings around the body. Ciliated cells have lateral extensions that intercalate with the non-ciliated cells. The kinetosome of each cilium has two longitudinally oriented cross-striated rootlets. The outer surface of the ciliated cells is covered with small tubercles, and the cytoplasm of these cells contains granules, vacuoles, mitochondria, fibrillar structures and lamellary bodies. A band of dense fibrils passes through the upper part of each ring of cells, going from one cell junction to another, encircling the entire body. Between the layer of ciliated + non–ciliated cells and the oocytes, elongated contractile cells from 4–5 longitudinal columns and 1 ring, the latter at the level of ciliated rings 7–9. The contractile cells contain thick and thin longitudinally oriented fibrils. The oocytes contain a large nucleus, numerous mitochondria, electron–dense granules and 1–2 spherical structures. An anteriorly situated, ciliated goblet–like receptor, not described for any other orthonectids, consists of three closely apposed cells, the upper part of which contains densely packed cilia. The genital pore opens through a non–ciliated cell and is surrounded by several cells with granules.  相似文献   

20.
The temporal and spatial pattern of segregation of the avian germline from the formation of the area pellucida to the beginning of primitive streak formation (stages VII–XIV, EG&K) was investigated using the culture of whole embryos and central and peripheral embryo fragments on vilelline membranes at stages VII–IX, immunohistological analysis of whole mount embryos and sections with monoclonal antibodies MC-480 against stage-specific embryonic antigen-1 (SSEA-1) and EMA-1, and with the culture of dispersed blastoderms at stages IX–XIV with and without an STO feeder layer. Whole embryos at intrauterine stages developed up to the formation of the primitive streak despite the absence of area pellucida expansion. Primordial germ cells (PGCs) appeared in the cultures of whole embryos and only in central fragments containing a partially formed area pellucida at stages VII–IX. When individual stage IX–XIV embryos were dispersed and cultured without a feeder layer, 25–45 PGCs/embryo were detected only with stage X–XIV, but not with stage IX blastoderms. However, the culture of dispersed cells from the area pellucida of stages IX–XIII on STO feeder layers yielded about 150 PGCs/embryo. The carbohydrate epitopes recognized by anti-SSEA-1 and EMA-1 first appeared at stage X on cells in association with polyingressing cells on the ventral surface of the epiblast and later on the dorsal surface of the hypoblast. The SSEA-1-positive hypoblast cells gave rise to chicken PGCs when cultured on a feeder layer of quail blastodermal cells. From these observations, we propose that the segregation and development of avian germline is a gradual, epigenetic process associated with the translocation of SSEA-1/EMA-1-positive cells from the ventral surface of the area pellucida at stage X to the dorsal side of the hypoblast at stages XI–XIV. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号