首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal recombinase polymerase amplification (RPA) assays for the specific detection of “Candidatus Phytoplasma mali (Ca. P. mali),” the causal agent of apple proliferation, were developed. The assays amplify a fragment of the imp gene and amplimers were detected either by fluorescence in real‐time mode (TwistAmp®exo assay) using a fluorophore‐labelled probe or by direct visualization employing a lateral flow device (TwistAmp®nfo assay/Milenia®HybriDetect). The RPA assays specifically amplified DNA from “Ca. P. mali” strains, and cross‐reactivity with other phytoplasmas or plant DNA was not observed. The limit of detection was determined with a cloned imp standard, and positive results were obtained down to 10 copies with both RPA assay formats. In comparison with a TaqMan real‐time PCR assay based on the same target gene, the RPA assays were equally sensitive, but results were obtained faster. Simplified nucleic acid extraction procedures from plant tissue with Tris‐ and CTAB‐based buffers revealed that crude Tris–DNA extracts were a suitable source for RPA tests while larger concentrations of CTAB were inhibitory. This is the first report of RPA‐based assays for the detection of “Ca. P. mali”. The assays are suitable for high‐throughput screening of plant material and point‐of‐care diagnostic and can be potentially combined with a simplified DNA extraction procedure.  相似文献   

2.
Eating behavior can be influenced by the rewarding value of food, i.e., “liking” and “wanting.” The objective of this study was to assess in normal‐weight dietary restrained (NR) vs. unrestrained (NU) eaters how rewarding value of food is affected by satiety, and by eating a nonhealthy perceived, dessert‐specific food vs. a healthy perceived, neutral food (chocolate mousse vs. cottage cheese). Subjects (24NR age = 25.0 ± 8.2 years, BMI = 22.3 ± 2.1 kg/m2; 26NU age = 24.8 ± 8.0 years, BMI = 22.1 ± 1.7 kg/m2) came to the university twice, fasted (randomized crossover design). Per test‐session “liking” and “wanting” for 72 items divided in six categories (bread, filling, drinks, dessert, sweets, stationery (placebo)) was measured, before and after consumption of chocolate mousse/cottage cheese, matched for energy content (5.6 kJ/g) and individual daily energy requirements (10%). Chocolate mousse was liked more than cottage cheese (P < 0.05). After consumption of chocolate mousse or cottage cheese, appetite and “liking” vs. placebo were decreased in NR and NU (P < 0.03), whereas “wanting” was only decreased in NR vs. NU (P ≤ 0.01). In NR vs. NU “wanting” was specifically decreased after chocolate mousse vs. cottage cheese; this decrease concerned especially “wanting” for bread and filling (P < 0.05). To conclude, despite similar decreases in appetite and “liking” after a meal in NR and NU, NR decrease “wanting” in contrast to NU. NR decrease “wanting” specifically for a nonhealthy perceived, “delicious,” dessert‐specific food vs. a nutritional identical, yet healthy perceived, slightly less “delicious,” “neutral” food. A healthy perceived food may thus impose greater risk for control of energy intake in NR.  相似文献   

3.
4.
Hard carbons (HCs) are promising anodes of sodium‐ion batteries (SIBs) due to their high capacity, abundance, and low cost. However, the sodium storage mechanism of HCs remains unclear with no consensus in the literature. Here, based on the correlation between the microstructure and Na storage behavior of HCs synthesized over a wide pyrolysis temperature range of 600–2500 °C, an extended “adsorption–insertion” sodium storage mechanism is proposed. The microstructure of HCs can be divided into three types with different sodium storage mechanisms. The highly disordered carbon, with d002 (above 0.40 nm) large enough for sodium ions to freely transfer in, has a “pseudo‐adsorption” sodium storage mechanism, contributing to sloping capacity above 0.1 V, together with other conventional “defects” (pores, edges, heteroatoms, etc.). The pseudo‐graphitic carbon (d‐spacing in 0.36–0.40 nm) contributes to the low‐potential (<0.1 V) plateau capacity through “interlayer insertion” mechanism, with a theoretical capacity of 279 mAh g?1 for NaC8 formation. The graphite‐like carbon with d002 below 0.36 nm is inaccessible for sodium ion insertion. The extended “adsorption–insertion” model can accurately explain the dependence of the sodium storage behavior of HCs with different microstructures on the pyrolysis temperature and provides new insight into the design of HC anodes for SIBs.  相似文献   

5.
The coiled shell of gastropods begins as a cap-shaped lens of organic and calcified material that covers the posterior dorsal side of the larva. During development the cap enlarges to cover the larval visceral mass. Marginal growth then produces the characteristic coiled shell. One model of the initiation of shell coiling in “archaeogastropods” requires that the shell remains flexible and uncalcified until after torsion, and that muscle contraction during torsion deforms the shell. We describe early shell calcification and tested this requirement of the model for the patellogastropod limpets Tectura scutum and Lottia digitalis, the trochids Calliostoma ligatum and Margarites pupillus and the abalone Haliotis kamtschatkana. We determined the stage of initial calcification by staining larvae with the fluorescent calcium marker calcein and observing them with bright field, crossed polarizing filter, and fluorescence microscopy. In T. scutum the earliest observable shell was calcified and calcium was sometimes detected even before the initial shell was visible. Larvae of the other species deposited a noncalcified matrix that was subsequently calcified, and in C. ligatum and M. pupillus this initial calcification was distinctly spotty. Shells of both patellogastropods and the abalone were demonstrably rigid prior to torsion while the shells of the trochids were not. These results suggest that shell coiling in patellogastropods and abalone is not initiated by contraction of the larval retractor muscle during torsion; in trochids this mechanism is possible. However, analysis of camera lucida drawings of pre- and post-torsional shells of T. scutum and C. ligatum did not detect shell shape changes during torsion. J. Morphol. 235:77–89, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
This study evaluated the phylogenetic relationship among samples of “Chantransia” stage of the Batrachospermales and Thoreales from several regions of the world based on sequences of two genes—the plastid‐encoded RUBISCO LSU gene (rbcL) and the nuclear SSU ribosomal DNA gene (SSU rDNA). All sequences of “Chantransia macrospora” were shown to belong to Batrachospermum macrosporum based on both molecular markers, confirming evidence from previous studies. In contrast, nine species are now associated with “Chantransia pygmaea,” including seven species of the Batrachospermales and two of the Thoreales. Therefore, the presence of “C. macrospora” in a stream can be considered reliable evidence that it belongs to B. macrosporum, whereas the occurrence of “C. pygmaea” does not allow the recognition of any particular species, since it is associated with at least nine species. Affinities of “Chantransia” stages to particular taxa were congruent for 70.5% of the samples comparing the rbcL and SSU analyses, which were associated with the same or closely related species for both markers. Sequence divergences have been reported in the “Chantransia” stage in comparison to the respective gametophyte, and this matter deserves further attention.  相似文献   

8.
A novel porphyrin‐C60 dyad (PCD1) is designed and synthesized to investigate and manipulate the supramolecular structure where geometrically isotropic [such as [60]fullerene (C60)] and anisotropic [such as porphyrin (Por)] units coexist. It is observed that PCD1 possesses an enantiomeric phase behavior. The melting temperature of the stable PCD1 thermotropic phase is 160 °C with a latent heat (ΔH) of 18.5 kJ mol?1. The phase formation is majorly driven by the cooperative intermolecular Por–Por and C60–C60 interactions. Structural analysis reveals that this stable phase possesses a supramolecular “double‐cable” structure with one p‐type Por core columnar channel and three helical n‐type C60 peripheral channels. These “double‐cable” columns further pack into a hexagonal lattice with a = b = 4.65 nm, c = 41.3 nm, α = β = 90°, and γ = 120°. The column repeat unit is determined to possess a 12944 helix. With both donor (D; Pro) and acceptor (A; C60) units having their own connecting channels as well as the large D/A interface within the supramolecular “double‐cable” structure, PCD1 has photogenerated carriers with longer lifetimes compared to the conventional electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester. A phase‐separated columnar morphology is observed in a bulk‐heterojunction (BHJ) material made by the physical blend of a low band‐gap conjugated polymer, [poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta [2,1‐b;3,4‐b′]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothia‐diazole)] (PCPDTBT), and PCD1. With a specific phase structure in the solid state and in the blend, PCD1 is shown to be a promising candidate as a new electron acceptor in high performance BHJ polymer solar cells.  相似文献   

9.
Material from 49 localities in Europe, Asia and Africa is used to study two similar Diaphanosoma species, viz. D. mongolianum UENO, 1938, and D. lacustris KORINEK, 1981, both of which were described earlier under other names, the most common of which were “D. brachyurum”, “D. leuchtenbergianum” and “D. birgei lacustris”. These species are redescribed in detail, consideration being given to interpopulational and individual morphological variability, the type material, and material from type localities. The morphology of the setae of the swimming antennae is studied in detail, and the author concludes that some of them are not only used for swimming but also perform a sensory function. Some aspects of the biology of the species are described. They inhabit water bodies of different types, are often so abundant that they constitute the main component of zooplankton communities, and are an important link in the trophic chain. Little known cases of the co-occurrence of Diaphanosoma species in a water body are described. Localities known for D. mongolianum and D. lacustris are situated mainly in the temperate and subtropical zones, the former species penetrating farther north than the latter. However, they are also found in the White Nile (Sudan) and Ethiopian lakes. This southward penetration may be connected with the azonal distribution of fluviatile fauna and with the altitude of Ethiopian lakes.  相似文献   

10.
  1. Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.
  2. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).
  3. We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).
  4. We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.
  5. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.
  相似文献   

11.
Peroxiredoxins (Prxs) are ubiquitous and efficient antioxidant enzymes crucial for redox homeostasis in most organisms, and are of special importance for disease‐causing parasites that must protect themselves against the oxidative weapons of the human immune system. Here, we describe reanalyses of crystal structures of two Prxs from malaria parasites. In addition to producing improved structures, we provide normalizing explanations for features that had been noted as unusual in the original report of these structures (Qiu et al., BMC Struct Biol 2012;12:2). Most importantly, we provide evidence that the unusual octameric assembly seen for Plasmodium yoelii Prx1a is not physiologically relevant, but arises because the structure is not of authentic P. yoelii Prx1a, but a variant we designate PyPrx1aN* that has seven native N‐terminal residues replaced by an affinity tag. This N‐terminal modification disrupts a previously unrecognized, hydrophobic “ball‐and‐socket” interaction conserved at the B‐type dimer interface of Prx1 subfamily enzymes, and is accommodated by a fascinating two‐residue “β‐slip” type register shift in the β‐strand association at a dimer interface. The resulting change in the geometry of the dimer provides a simple explanation for octamer formation. This study illustrates how substantive impacts can occur in protein variants in which native residues have been altered.  相似文献   

12.
Reaching device efficiencies that can rival those of polymer‐fullerene Bulk Heterojunction (BHJ) solar cells (>10%) remains challenging with the “All‐Small‐Molecule” (All‐SM) approach, in part because of (i) the morphological limitations that prevail in the absence of polymer and (ii) the difficulty to raise and balance out carrier mobilities across the active layer. In this report, the authors show that blends of the SM donor DR3TBDTT (DR3) and the nonfullerene SM acceptor O‐IDTBR are conducive to “All‐SM” BHJ solar cells with high open‐circuit voltages (VOC) >1.1 V and PCEs as high as 6.4% (avg. 6.1%) when the active layers are subjected to a post‐processing solvent vapor‐annealing (SVA) step with dimethyl disulfide (DMDS). Combining electron energy loss spectroscopy (EELS) analyses and systematic carrier recombination examinations, the authors show that SVA treatments with DMDS play a determining role in improving charge transport and reducing non‐geminate recombination for the DR3:O‐IDTBR system. Correlating the experimental results and device simulations, it is found that substantially higher BHJ solar cell efficiencies of >12% can be achieved if the IQE and carrier mobilities of the active layer are increased to >85% and >10?4 cm2 V?1 s?1, respectively, while suppressing the recombination rate constant k to <10?12 cm3 s?1.  相似文献   

13.
Cilia on the ventral surface of the hypotrich ciliate Euplotes are clustered into polykinetids or compound ciliary organelles, such as cirri or oral membranelles, used in locomotion and prey capture. A single polykinetid may contain more than 150 individual cilia; these emerge from basal bodies held in a closely spaced array within a scaffold or framework structure that has been referred to as a basal‐body “cage”. Cage structures were isolated free of cilia and basal bodies; the predominant component of such cages was found on polyacrylamide gels to be a 45‐kDa polypeptide. Antisera were raised against this protein band and used for immunolocalizations at the light and electron microscope levels. Indirect immunofluorescence revealed the 45‐kDa polypeptide to be localized exclusively to the bases of the ventral polykinetids. Immunogold staining of thin sections of intact cells further localized this reactivity to filaments of a double‐layered dense lattice that appears to link adjoining basal bodies into ordered arrays within each polykinetid. Scanning electron microscopy of isolated cages reveals the lower or “basal” cage layer to be a fine lacey meshwork supporting the basal bodies at their proximal ends; adjoining basal bodies are held at their characteristic spacing by filaments of an upper or “medial” cage layer. The isolated cage thus resembles a miniature test‐tube rack, able to accommodate varying arrangements of basal‐body rows, depending on the particular type of polykinetid. Because of its clear and specific localization to the basal‐body cages in Euplotes, we have termed this novel 45‐kDa protein “cagein”.  相似文献   

14.
The European bitterling (Rhodeus amarus Bloch) practises a rather unusual method of spawning by using the favorable conditions in the gills of a living freshwater mussel (genera Unio and Anodonta) for the embryonic development of its fry. The capacity of mussel recognition was studied in inexperienced individuals with the aid of simultaneous preference tests in which pairs of dummies with increasing similarity to mussels were presented to the animals. The frequency of mussel-referred motor patterns, which were supposed to be species-specific (Wiepkema 1961), supplied the evaluation criterion. The results revealed a hierarchy of effectiveness within the class of relevant stimuli and showed certain effects of additivity typical of an Innate Releasing Mechanism or IRM. By far the most effective stimulus consisted in the specific smell of the mussel which is composed of at least three constituents (protein, hyaluronic acid, ammonium). The water flow itself, produced by the mussel in order to maintain nutritive and respiratory functions, was effective depending on its velocity (3 < v < 12 cm/s), its orientation (suction produced no effect), its direction (vertical > horizontal) and the shape of its field (oval). Within the visual modality only two simple perceptory patterns could be detected (dark spot on a clearer surface, straight horizontal edge), but the visual shape of the mussel as a whole was ignored by inexperienced individuals. Nevertheless the bitterlings are able to learn the shape when exposed to a living mussel and, in addition, it was even possible to condition the animals to an artificial object (inverted pot of clay) by using the mussel-smell flow as a reinforcing stimulus. The final discussion deals with the question of whether it is possible to interpret these “innate” respectively “learned” components of the IRME as sensory counterparts of behavioral structures which simply serve different functions by referring to correspondingly different sectors of the environment. In such a case the epistemological dichotomy regularly associated with the notions of “innate” (= “pre-given phylogenetical knowledge”) and “learned” (= “cognitive increase during ontogeny”) would suffer incisive questioning.  相似文献   

15.
“Bottom‐up” influences, that is, masting, plus population density and climate, commonly influence woodland rodent demography. However, “top‐down” influences (predation) also intervene. Here, we assess the impacts of masting, climate, and density on rodent populations placed in the context of what is known about “top‐down” influences. To explain between‐year variations in bank vole Myodes glareolus and wood mouse Apodemus sylvaticus population demography, we applied a state‐space model to 33 years of catch‐mark‐release live‐trapping, winter temperature, and precise mast‐collection data. Experimental mast additions aided interpretation. Rodent numbers in European ash Fraxinus excelsior woodland were estimated (May/June, November/December). December–March mean minimum daily temperature represented winter severity. Total marked adult mice/voles (and juveniles in May/June) provided density indices validated against a model‐generated population estimate; this allowed estimation of the structure of a time‐series model and the demographic impacts of the climatic/biological variables. During two winters of insignificant fruit‐fall, 6.79 g/m2 sterilized ash seed (as fruit) was distributed over an equivalent woodland similarly live‐trapped. September–March fruit‐fall strongly increased bank vole spring reproductive rate and winter and summer population growth rates; colder winters weakly reduced winter population growth. September–March fruit‐fall and warmer winters marginally increased wood mouse spring reproductive rate and September–December fruit‐fall weakly elevated summer population growth. Density dependence significantly reduced both species' population growth. Fruit‐fall impacts on demography still appeared after a year. Experimental ash fruit addition confirmed its positive influence on bank vole winter population growth with probable moderation by colder temperatures. The models show the strong impact of masting as a “bottom‐up” influence on rodent demography, emphasizing independent masting and weather influences; delayed effects of masting; and the importance of density dependence and its interaction with masting. We conclude that these rodents show strong “bottom‐up” and density‐dependent influences on demography moderated by winter temperature. “Top‐down” influences appear weak and need further investigation.  相似文献   

16.
I propose a T‐cell receptor (TcR)‐based mechanism by which immunity mediates both “genetic self” and “microbial self” thereby, connecting microbiome disease with autoimmunity. The hypothesis is based on simple principles. First, TcR are selected to avoid strong cross‐reactivity with “self,” resulting in selection for a TcR repertoire mimicking “genetic self.” Second, evolution has selected for a “microbial self” that mimics “genetic self” so as to share tolerance. In consequence, our TcR repertoire also mimics microbiome antigenicity, providing a novel mechanism for modulating tolerance to it. Also, the microbiome mimics the TcR repertoire, acting as a secondary immune system. I call this TcR‐microbiome mimicry “holoimmunity” to denote immune tolerance to the “holobiont self.” Logically, microbiome‐host mimicry means that autoimmunity directed at host antigens will also attack components of the microbiome, and conversely, an immunological attack on the microbiome may cross‐react with host antigens producing “holoautoimmunity.”
  相似文献   

17.
Morphology and cytochemical properties of “mycetomes” are described in the developing oocytes and eggs of an idolothripine thrips, Bactrothrips brevitubus (Thysanoptera). The “mycetome” is an aggregation of numerous granules of various sizes. We found no membrane encapsulating the aggregation of granules. Two types of granules are distinguishable: the smaller ones filled with electron-dense material and the larger ones with inclusion of myelin-like structures. Each of the granules has a limiting membrane. The limiting membrane is a simple unit membrane but shows no characteristics of cell walls. No nucleoid or nucleoplasm is detected in the granules. The “mycetome” takes up dyes whose specific incorporation into lysosomes has been demonstrated. In addition, a high activity of acid phosphatase is demonstrated in the “mycetome.” These characteristics apparently indicated that the “mycetome” of Bactrothrips brevitubus is an aggregation of lysosomes but not a clump of microorganisms. Thus we propose that the structure being regarded as the mycetome should be renamed the “lysosomal aggregation.” © 1994 Wiley-Liss, Inc.  相似文献   

18.
Sexual dichromatism is widespread among animals, but examples of “reverse” sexual dichromatism, in which females are more brightly colored than males, are extremely rare. We discovered a unique case of reverse sexual dichromatism in the golden rocket frog (Anomaloglossus beebei), a diurnal Neotropical frog. Females are bright “golden” in color, and males are drab tan with brown pigmentation that darkens when they are calling. Here, we document this color variation with calibrated digital photography and further show that there is no evidence for sex‐specific habitat matching; both sexes live in the same well‐lit habitat on green bromeliad leaves. Our results suggest that color variation in this species is an intraspecific signal and provide an important exception to the general expectation that males are more visually conspicuous in species with conventional sex roles.  相似文献   

19.
Illicit rac‐MDPV (3,4‐methylenedioxypyrovalerone), manufactured in clandestine labs, has become widely abused for its cocaine‐like stimulant properties. It has recently been found as one of the toxic materials in the so‐called “bath salts,” producing, among other effects, psychosis and tachycardia in humans when introduced by any of the several routes of administration (e.g., intravenous, oral, etc.). The considerable toxicity of this “designer drug” probably resides in one of the enantiomers of the racemate. In order to obtain a sufficient amount of the enantiomers of rac‐MDPV to determine their activity, we improved the known synthesis of rac‐MDPV and found chemical resolving agents, (+)‐ and (–)‐2’‐bromotetranilic acid, that gave the MDPV enantiomers in >96% enantiomeric excess as determined by 1H nuclear magnetic resonance and chiral high‐performance liquid chromatography. The absolute stereochemistry of these enantiomers was determined by single‐crystal X‐ray diffraction studies. Chirality 27:287‐293, 2015. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

20.
Obesity research suffers from an overinclusion paradigm whereby all participants with a BMI beyond a certain cutoff value (e.g., 30) are typically combined in a single group and compared to those of normal weight. There has been little attempt to identify meaningful subgroups defined by their salient biobehavioral differences. In order to address this limitation, we examined genetic and psychological indicators of hedonic eating in obese adults with (n = 66) and without (n = 70) binge eating disorder (BED). Our analyses focused on dopamine (DA) and opioid genetic markers because of their conjoint association with the functioning of brain reward mechanisms. We targeted three functional polymorphisms related to the D2 receptor (DRD2) gene, as well as the functional A118G polymorphism of the mu‐opioid receptor (OPRM1) gene. We found that significantly more obese controls had the “loss‐of‐function” A1 allele of Taq1A compared to their BED counterparts, whereas the “gain‐of‐function” G allele of A118G occurred with greater frequency in the BED group. A significant gene–gene combination χ2 analysis also indicated that of those participants with the gain‐gain genotype (G+ and A1), 80% were in the BED group whereas only 35% with the loss‐loss genotype (G? and A1+) were in this group. Finally, BED subjects had significantly higher scores on a self‐report measure of hedonic eating. Our findings suggest that BED is a biologically based subtype of obesity and that the proneness to binge eating may be influenced by a hyper‐reactivity to the hedonic properties of food—a predisposition that is easily exploited in our current environment with its highly visible and easily accessible surfeit of sweet and fatty foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号