首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The distribution of salmon gonadotrophin-releasing hormone (sGnRH) was studied in the brain and pituitary of two-year-old immature sea bass (Dicentrarchus labrax) by means of an enzymoimmunoassay (EIA) for sGnRH and immunocytochemistry. The EIA for sGnRH is a competitive assay using a tracer made of sGnRH coupled to acetylcholinesterase from an electric eel. The separation of free and bound tracer is achieved by coating the plates with mouse anti-rabbit IgG monoclonal antibodies. Displacement curves generated by sGnRH and extracts from pituitary and different brain regions showed a good parallelism allowing the assay to be used for sGnRH measurements in this species. Although all parts of the brain contained measurable levels of sGnRH, the highest concentrations were found in the pituitary, the olfactory bulbs and the telencephalon. These data were confirmed by immunocytochemistry. Cell bodies were found in the olfactory bulbs, ventral telencephalon, preoptic region and mediobasal hypothalamus. Immunoreactive fibers could be observed in all parts of the brain including the optic tectum, the cerebellum (corpus and valvula), the vagal lobe, the medulla oblongata and the rostral spinal cord. In most cases, these fibers do not form well defined bundles; however, there was clearly a continuum of immunoreactive fibers, extending from the olfactory bulbs to the pituitary, and along which all the cell bodies described above were located. In the ventral telencephalon and the preoptic region, clear pictures of varicose positive fibers contacting immunoreactive perikarya could be observed. These data indicate that sGnRH is most likely an endogenous peptide in the brain of the sea bass, although the presence of other forms of GnRH cannot be excluded at this point. This study also demonstrates that the general organization of the GnRH systems in the sea bass is highly similar to what has been described in most freshwater teleost species, and provides basis for further studies on the neuroendocrine control of gonadotrophin release in this commercially important species.  相似文献   

2.
We localized melatonin binding sites in different brain regions (optic tectum, telencephalon, cerebellum, hypothalamus, olfactory bulbs, and medulla oblongata) of Senegal sole, a species of aquaculture interest, and checked day/night changes in density (Bmax) at mid‐light (ZT06) and mid‐dark (ZT18). Plasma melatonin was measured using a radioimmunoassay, while binding assays were performed using 2‐[125I]iodomelatonin as a radioligand. Plasma melatonin concentrations were significantly lower at mid‐light (189.5±46 pg/ml) than mid‐dark (455.5±163 pg/ml). Values of Bmax were statistically significantly higher in the optic tectum (5.6±0.6 and 12.3±1 fmol/mg prot, at mid‐light and mid‐dark, respectively) and in the cerebellum (7.7±1.1 and 10.6±1.3 fmol/mg prot, at mid‐light and mid‐dark, respectively). Significant day/night differences were only observed in these two tissues. These results show for the first time the distribution of melatonin binding sites within the brain of a flatfish species and their lack of down‐regulation.  相似文献   

3.
A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.  相似文献   

4.
Carassius RFamide (C-RFa) is a novel peptide found in the brain of the Japanese crucian carp. It has been demonstrated that mRNA of C-RFa is present in the telencephalon, optic tectum, medulla oblongata, and proximal half of the eyeball in abundance. Immunohistochemical methods were employed to elucidate the distribution of the peptide in the brain of the goldfish (Carassius auratus) in detail. C-RFaimmunoreactive perikarya were observed in the olfactory bulb, the area ventralis telencephali pars dorsalis and lateralis, nucleus preopticus, nucleus preopticus periventricularis, nucleus lateralis tuberis pars posterioris, nucleus posterioris periventricularis, nucleus ventromedialis thalami, nucleus posterioris thalami, nucleus anterior tuberis, the oculomotor nucleus, nucleus reticularis superior and inferior, facial lobe, and vagal lobe. C-RFa immunoreactive fibers and nerve endings were present in the olfactory bulb, olfactory tract, area dorsalis telencephali pars centralis and medialis, area ventralis telencephali, midbrain tegmentum, diencephalon, medulla oblongata and pituitary. However, in the optic tectum the immunopositive perikarya and fibers were less abundant. Based on these results, some possible functions of C-RFa in the nervous system were discussed.  相似文献   

5.
Total brain mass and the volumes of five specific brain regions in diploid and triploid Atlantic salmon Salmo salar pre‐smolts were measured using digital images. There were no significant differences (P > 0·05) in total brain mass when corrected for fork length, or the volumes of the optic tecta or hypothalamus when corrected for brain mass, between diploids and triploids. There was a significant effect (P < 0·01) of ploidy on the volume of the olfactory bulb, with it being 9·0% larger in diploids compared with triploids. The cerebellum and telencephalon, however, were significantly larger, 17 and 8% respectively, in triploids compared with diploids. Sex had no significant effect (P > 0·05) on total brain mass or the volumes of any measured brain region. As the olfactory bulbs, cerebellum and telencephalon are implicated in a number of functions, including foraging ability, aggression and spatial cognition, these results may explain some of the behavioural differences previously reported between diploids and triploids.  相似文献   

6.
We localized melatonin binding sites in different brain regions (optic tectum, telencephalon, cerebellum, hypothalamus, olfactory bulbs, and medulla oblongata) of Senegal sole, a species of aquaculture interest, and checked day/night changes in density (B(max)) at mid-light (ZT06) and mid-dark (ZT18). Plasma melatonin was measured using a radioimmunoassay, while binding assays were performed using 2-[(125)I]iodomelatonin as a radioligand. Plasma melatonin concentrations were significantly lower at mid-light (189.5+/-46 pg/ml) than mid-dark (455.5+/-163 pg/ml). Values of B(max) were statistically significantly higher in the optic tectum (5.6+/-0.6 and 12.3+/-1 fmol/mg prot, at mid-light and mid-dark, respectively) and in the cerebellum (7.7+/-1.1 and 10.6+/-1.3 fmol/mg prot, at mid-light and mid-dark, respectively). Significant day/night differences were only observed in these two tissues. These results show for the first time the distribution of melatonin binding sites within the brain of a flatfish species and their lack of down-regulation.  相似文献   

7.
Specific binding sites for cholecystokinin (CCK) and substance P (SP) were detected in the brain of a marine teleost fish, the sea bass, after in vitro incubation of tissue sections with the tritiated peptides and light microscopic autoradiography. Specific binding sites for [3H]-CCK were detected in the dorsal and ventral telencephalon, in the preoptic, tuberal and posterior hypothalamus, in the optic tectum, in the valvulla cerebelli, in the vagal lobe and further in a dorsal location in the medulla oblongata. Areas rich in [3H]-SP binding were located in the ventral telencephalon, in the entire hypothalamic and thalamic region, in the midbrain tegmentum, in the optic tectum, in the valvulla cerebelli and in the medulla oblongata. The distribution of these binding sites seemed to match fairly well with the location of the corresponding immunoreactive elements, although some minor mismatches could be observed. These autoradiographic findings provide the first anatomical evidence for the presence of CCK-like and SP-like binding sites in the brain of a teleost fish.  相似文献   

8.
The anterior part of the embryonic telencephalon gives rise to several brain regions that are important for animal behavior, including the frontal cortex (FC) and the olfactory bulb. The FC plays an important role in decision‐making behaviors, such as social and cognitive behavior, and the olfactory bulb is involved in olfaction. Here, we show the organizing activity of fibroblast growth factor 8 (Fgf8) in the regionalization of the anterior telencephalon, specifically the FC and the olfactory bulb. Misexpression of Fgf8 in the most anterior part of the mouse telencephalon at embryonic day 11.5 (E11.5) by ex utero electroporation resulted in a lateral shift of dorsal FC subdivision markers and a lateral expansion of the dorsomedial part of the FC, the future anterior cingulate and prelimbic cortex. Fgf8‐transfected brains had lacked ventral FC, including the future orbital cortex, which was replaced by the expanded olfactory bulb. The olfactory region occupied a larger area of the FC when transfection efficiency of Fgf8 was higher. These results suggest that Fgf8 regulates the proportions of the FC and olfactory bulb in the anterior telencephalon and has a medializing effect on the formation of FC subdivisions.  相似文献   

9.
Summary In cichlid, poecilid and centrarchid fishes luteinizing hormone releasing hormone (LHRH)-immunoreactive neurons are found in a cell group (nucleus olfactoretinalis) located at the transition between the ventral telencephalon and olfactory bulb. Processes of these neurons project to the contralateral retina, traveling along the border between the internal plexiform and internal nuclear layer, and probably terminating on amacrine or bipolar cells. Horseradish peroxidase (HRP) injected into the eye or optic nerve is transported retrogradely in the optic nerve to the contralateral nucleus olfactoretinalis where neuronal perikarya are labeled. Labeled processes leave this nucleus in a rostral direction and terminate in the olfactory bulb. The nucleus olfactoretinalis is present only in fishes, such as cichlids, poecilids and centrarchids, in which the olfactory bulbs border directly the telencephalic hemispheres. In cyprinid, silurid and notopterid fishes, in which the olfactory bulbs lie beneath the olfactory epithelium and are connected to the telencephalon via olfactory stalks, the nucleus olfactoretinalis or a comparable arrangement of LHRH-immunoreactive neurons is lacking. After retrograde transport of HRP in the optic nerve of these fishes no labeling of neurons in the telencephalon occurred. It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.  相似文献   

10.
In different brain structures (telencephalon, tectum opticum, rhombencephalon, cerebellum and medulla oblongata) of the teleost Serranus scriba Cuv., the content of glycogen was observed during a 24-h period. A circadian rhythm of brain glycogen concentration was found. The results are discussed with particular reference to the possible relation between catecholamines, cyclic adenine nucleotide and glycogen metabolism in the brain.  相似文献   

11.
Summary The organization of Gn-RH systems in the brain of teleosts has been investigated previously by immunohistochemistry using antibodies against the mammalian decapeptide which differs from the teleostean factor. Here, we report the distribution of immunoreactive Gn-RH in the brain of goldfish using antibodies against synthetic teleost peptide.Immunoreactive structures are found along a column extending from the rostral olfactory bulbs to the pituitary stalk. Cell bodies are observed within the olfactory nerves and bulbs, along the ventromedial telencephalon, the ventrolateral preoptic area and the latero-basal hypothalamus. Large perikarya are detected in the dorsal midbrain tegmentum, immediately caudal to the posterior commissure. A prominent pathway was traced from the cells located in the olfactory nerves through the medial olfactory tract and along all the perikarya described above to the pituitary stalk. In the pituitary, projections are restricted to the proximal pars distalis. A second immunoreactive pathway ascends more dorsally in the telencephalon and arches to the periventricular regions of the diencephalon. Part of this pathway forms a periventricular network in the dorsal and posterior hypothalamus, whereas other projections continue caudally to the medulla oblongata and the spinal cord. Lesions of the ventral preoptic area demonstrate that most of the fibers detected in the pituitary originate from the preoptic region.  相似文献   

12.
Summary Cobaltous-lysine is transported anterogradely from the optic nerve of the teleost, Lethrinus chrysostomus (Lethrinidae, Perciformes). The marginal optic tract is labelled in longtitudinal bands of light and dark staining fibres which persists caudally within the ventral division but not in the dorsal division. This species possesses multiple central targets in the contralateral preoptic, diencephalic, pretectal, periventricular and tectal regions of the brain. In addition, a greater subdivision of the marginal optic tract is found to project to various nuclei. Ipsilateral projections are found in the suprachiasmatic nucleus and in the region of the horizontal commissure. Projections are also found in the telencephalic region of the nucleus olfactoretinalis and the thalamic region of the nucleus thalamoretinalis. The retinotopicity of some of these nuclei, found in previous studies, is discussed in relation to the possibility of specific sub-populations of retinal ganglion cells having different central targets.Abbreviations used in the Text and Figures A nucleus anteriorthalami - AO accessory optic nucleus - AOT accessory optic tract - AxOT axial optic tract - BO nucleus of the basal optic root - C cerebellum - HCv ventral division of horizontal commissure - I nucleus intermedius thalami - IL inferior lobe - MdOT medial optic tract - MO medulla oblongata - MOTd dorsal division of the marginal optic tract - MOTi intermediate division of the marginal optic tract - MOtv ventral division of the marginal optic tract - O olfactory bulb - OT optic tract - PC nucleus pretectalis centralis - PCo posterior commissure - Pd nucleus pretectalis dorsalis - PG preglomerular complex - PPd nucleus pretectalis periventricularis, pars dorsalis - PPv nucleus pretectalis periventricularis, pars ventralis - PSm nucleus pretectalis superficial pars magnocellularis - PSp nucleus pretectalis superficialis, pars parvocellularis - Sn suprachiasmatic nucleus - TEL telencephalon - TeO optic tectum - TL torus longtitudinalis - TrOlfR tractus olfactoretinalis - VCg granular layer of the valvula cerebelli - VCm molecular layer of the valvula cerebelli - VM nucleus medialis thalami - VL nucleus ventrolateralis thalami - VMdOT ventro-medial optic tract  相似文献   

13.
The distribution of immunoreactivity for histamine was studied in the brain of the urodele Triturus carnifex using the indirect immunofluorescence method. Histamine-immunoreactive cell bodies were localized in the caudal hypothalamus within the dorsolateral walls of the infundibular recesses. These immunoreactive cell bodies were pear-shaped, bipolar and frequently of the cerebrospinal-fluid-contacting type. Histaminergic nerve fibers were detected in almost all parts of the brain. Dense innervation was seen in the telencephalic medial pallium and ventral striatum, the neuropil of the preoptic area, the septum, the paraventricular organ, the posterior commissure, the caudal hypothalamus, the ventral and lateral mesencephalic tegmentum. Medium density innervation was observed in the lateral mesencephalic tegmentum and optic tectum. Poor innervation was present in the telencephalic dorsal pallium and in the central gray of the medulla oblongata. Few fibers occurred in the olfactory bulbs and in the telencephalic lateral pallium. Double immunofluorescence staining, using an antibody against tyrosine hydroxylase, showed that histamine-immunostained somata and those containing tyrosine-hydroxylase-like immunoreactivity were co-distributed in the tuberal hypothalamus. No co-occurrence of histamine-like and tyrosine hydroxylase-like immunostaining was seen in the same neuron. The pattern of histamine-immunoreactive neurons in the newt was similar to that described in other vertebrates. Our observations, carried out on the apparently simplified brain of the newt confirm that the basic histaminergic system is well conserved throughout vertebrates.  相似文献   

14.
15.
Variation in ecological selection pressures has been implicated to explain variation in brain size and architecture in fishes, birds and mammals, but little is known in this respect about amphibians. Likewise, the relative importance of constraint vs. mosaic hypotheses of brain evolution in explaining variation in brain size and architecture remains contentious. Using phylogenetic comparative methods, we studied interspecific variation in brain size and size of different brain parts among 43 Chinese anuran frogs and explored how much of this variation was explainable by variation in ecological factors (viz. habitat type, diet and predation risk). We also evaluated which of the two above‐mentioned hypotheses best explains the observed patterns. Although variation in brain size explained on average 80.5% of the variation in size of different brain parts (supporting the constraint hypothesis), none of the three ecological factors were found to explain variation in overall brain size. However, habitat and diet type explained a significant amount of variation in telencephalon size, as well in three composite measures of brain architecture. Likewise, predation risk explained a significant amount of variation in bulbus olfactorius and optic tecta size. Our results show that evolution of anuran brain accommodates features compatible with both constraint (viz. strong allometry among brain parts) and mosaic (viz. independent size changes in response to ecological factors in certain brain parts) models of brain size evolution.  相似文献   

16.
Several vertebrate species which underwent duplication of their genome, such as trout, salmon and Xenopus, possess two proopiomelanocortin (POMC) genes. In the trout, one of the POMC molecules, called POMC-A, exhibits a unique C-terminal extension of 25 amino acids which has no equivalent in other POMCs characterized so far. This C-terminal peptide contains three pairs of basic residues, suggesting that it may be the source of novel regulatory peptides. The aim of the present study was to investigate the occurrence of these peptides in the brain of the trout Oncorhynchus mykiss by using specific antibodies raised against two epitopes derived from the C-terminal extension of POMC-A, i.e., EQWGREEGEE and YHFQ-NH2. Immunohistochemical labeling of brain sections revealed the presence of EQWGREEGEE- and YHFQ-NH2-immunoreactive cell bodies in the anterior part of the nucleus lateralis tuberis of the hypothalamus. Immunoreactive fibers were observed in the dorsal hypothalamus, the thalamus, the telencephalon, the optic tectum and the medulla oblongata. In contrast, no labeling was detected using antibodies against the non-amidated peptide YHFQG. Biochemical characterization was performed by combining high-performance liquid chromatography (HPLC) analysis with radioimmunoassay (RIA) quantification. Two peptides exhibiting the same retention time as synthetic EQWGREEGEE and ALGERKYHFQ-NH2 were resolved. However, no peptide co-eluting with YHFQ-NH2 or YHFQG could be detected. These results demonstrate that, in the trout brain, post-translational processing of POMC-A generates the two decapeptides EQWGREEGEE and ALGERKYHFQ-NH2. The wide distribution of immunoreactive fibers in the diencephalon, telencephalon, optic tectum and medulla oblongata suggests that these peptides may exert neurotransmitter and/or neuromodulator activities.  相似文献   

17.
Hyperprolinemia type II (HPII) is an autosomal recessive disorder caused by the severe deficiency of enzyme 1-pyrroline-5-carboxylic acid dehydrogenase leading to tissue accumulation of proline. Chronic administration of Pro led to significant reduction of cytosolic ALT activity of olfactory lobes (50.57%), cerebrum (40%) and medulla oblongata (13.71%) only. Whereas mitochondrial ALT activity was reduced significantly in, all brain regions such as olfactory lobes (73.23%), cerebrum (70.26%), cerebellum (65.39%) and medulla oblongata (65.18%). The effect of chronic Pro administration on cytosolic AST activity was also determined. The cytosolic AST activity from olfactory lobes, cerebrum and medulla oblongata reduced by 75.71, 67.53 and 76.13%, respectively while cytosolic AST activity from cerebellum increased by 28.05%. The mitochondrial AST activity lowered in olfactory lobes (by 72.45%), cerebrum (by 78%), cerebellum (by 49.56%) and medulla oblongata (by 69.30%). In vitro studies also showed increase in brain tissue proline and decrease in glutamate levels. In vitro studies indicated that proline has direct inhibitory effect on these enzymes and glutamate levels in brain tissue showed positive correlation with AST and ALT activities. Acid phosphatase (ACP) activity reduced significantly in olfactory lobes (40.33%) and cerebrum (20.82%) whereas it elevated in cerebellum (97.32%) and medulla oblongata (76.33%). The histological studies showed degenerative changes in brain. Following proline treatment, the animals became sluggish and showed low responses to tail pricks and lifting by tails and showed impaired balancing. These observations indicate influence of proline on AST, ALT and ACP activities of different brain regions leading to lesser synthesis of glutamate thereby causing neurological dysfunctions.  相似文献   

18.
The present paper reports the immunohistochemical distribution of the gonadotropin-releasing hormone (GnRH) structures in the brain of the Senegalese sole, Solea senegalensis. In this study, we have used two antibodies against the salmon GnRH and chicken GnRH-II forms and the streptavidin–biotin-peroxidase complex method. Immunoreactive cell bodies are observed at the junction between the olfactory bulbs and the telencephalon (terminal nerve ganglion cells), in the ventral telencephalon, in the preoptic parvocellular nucleus, and in the synencephalic nucleus of the medial longitudinal fasciculus. GnRH-immunoreactive fibres were found extensively throughout the brain, located in the telencephalon, preoptic area, hypothalamus, hypophysis, optic tectum, midbrain and rhombencephalon. The antisera used in this study against the two GnRH forms exhibited cross-reactivity on the same cell masses and did not allow cell populations expressing different GnRH forms to be discriminated clearly. However, anti-salmon GnRH immunostained the GnRH cells and fibres of the forebrain much more intensely, whereas the anti-chicken GnRH antiserum shows a higher immunoreactivity on synencephalic cells of the medial longitudinal fasciculus.  相似文献   

19.
The distribution of neuropeptide Y-like immunoreactivity in the brain and hypophysis of the brown hagfish, Paramyxine atami, was examined by use of the peroxidase-antiperoxidase method. Immunoreactive cells were found in two areas of the brain, the nucleus hypothalamicus of the diencephalon and the ventrolateral area of the caudal tegmentum, at the level of the nucleus motorius V–VII. The labeled cells of the nucleus hypothalamicus were loosely grouped and recognized as bipolar neurons. Immunolabeled fibers were widely distributed in the brain, showing the highest density in the diencephalon. They were sparse, or absent, in the olfactory bulb, habenula, primordium hippocampi, neurohypophysis, corpus interpedunculare, and dorsolateral area of the medulla oblongata. The fibers appeared to project exclusively from the ventral hypothalamus to various other portions of the brain: the anterolateral areas of the telencephalon via the basal hypothalamus, the pars dorsalis thalami, the dorsocaudal region of the mesencephalon, and the ventromedial portions of the tegmentum and anterior medulla oblongata. These findings suggest that, in the brown hagfish, NPY-like substance is involved in neuroregulation of various cerebral areas, but it may be of little significance in the control of pituitary function.  相似文献   

20.
The rostral parts of the brain in Calamoichtkys calabaricus, a brachiopterygian fish, show some similarities with actinopterygians, as well as with lungfishes and amphibians. This study includes a histological analysis of the optic tectum, pretectum, diencephalon and the olfactory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号