首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPM1 is a rare progressive myoclonus epilepsy accompanied by apoptosis in the cerebellum of patients. Mutations in the gene of stefin B (cystatin B) are responsible for the primary defect underlying EPM1. Taking stefin B aggregates as a model we asked what comes first, protein aggregation or oxidative stress, and how these two processes correlate with cell death.We studied the aggregation in cells of the stefin B wild type, G4R mutant, and R68X fragment before (Ceru et al., 2010, Biol. Cell). The present study was performed on two more missense mutants of human stefin B, G50E and Q71P, and they similarly showed numerous aggregates upon overexpression. Mutant- and oligomer-dependent increase in oxidative stress and cell death in cells bearing aggregates was shown. On the other hand, there was no correlation between the size and number of the aggregates and cell death. We suggest that differences in toxicity of the aggregates depend on whether they are in oligomeric/protofibrillar or fibrillar form. This in turn likely depends on the mutant's 3D structure where unfolded proteins show lower toxicity. Imaging by transmission electron microscopy showed that the aggregates in cells are of different types: bigger perinuclear, surrounded by membranes and sometimes showing vesicle-like invaginations, or smaller, punctual and dispersed throughout the cytoplasm. All EPM1 mutants studied were inactive as cysteine proteases inhibitors and in this way contribute to loss of stefin B functions. Relevance to EPM1 disease by gain in toxic function is discussed.  相似文献   

2.
Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor, and the loss-of-function mutations in the stefin B gene were reported in patients with Unverricht-Lundborg disease (EPM1). In this study we demonstrated that stefin B-deficient (StB KO) mice were significantly more sensitive to the lethal LPS-induced sepsis and secreted higher amounts of pro-inflammatory cytokines IL-1β and IL-18 in the serum. We further showed that increased caspase-11 gene expression and better pro-inflammatory caspase-1 and -11 activation determined in StB KO bone marrow-derived macrophages resulted in enhanced IL-1β processing. Pretreatment of macrophages with the cathepsin inhibitor E-64d did not affect secretion of IL-1β, suggesting that the increased cathepsin activity determined in StB KO bone marrow-derived macrophages is not essential for inflammasome activation. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the lack of stefin B resulted in the increased destabilization of mitochondrial membrane potential and mitochondrial superoxide generation. Collectively, our study demonstrates that the LPS-induced sepsis in StB KO mice is dependent on caspase-11 and mitochondrial reactive oxygen species but is not associated with the lysosomal destabilization and increased cathepsin activity in the cytosol.  相似文献   

3.
4.
Many questions in the field of protein aggregation to amyloid fibrils remain open. In this review we describe predominantly in vitro studies of oligomerization and amyloid fibril formation by human stefins A and B. In human stefin B amyloidogenesis in vitro we have observed some general and many specific properties of its prefibrillar oligomers and amyloid fibrils. One characteristic feature in common to stefins and cystatins (and possibly some other amyloid proteins) is domain-swapping. In addition to solution structure of the domain-swapped dimer of stefin A, we recently have determined 3D structure of stefin B tetramer, which proved to be composed from two domain-swapped dimers, whose interaction occurs by a proline switch in the loop surrounding the conserved Pro 74. Studying the mechanism of fibril formation by stefin B, we found that the nucleation and fibril elongation reactions have energies of activation (Ea’s) in the range of proline isomerisation, strongly indicating importance of the Pro at site 74 and/or other prolines in the sequence. Correlation between toxicity of the prefibrillar oligomers and their interaction with acidic phospholipids was demonstrated. Stefin B was shown to interact with amyloid-beta peptide of Alzheimer’s disease in an oligomer specific manner, both in vitro and in the cells. It also has been shown that endogenous stefin B (with E at site 31) but especially the EPM1 mutant R68X and Y31-stefin B variant, and to a lesser extent EPM1 mutant G4R, are prone to form aggregates in cells.  相似文献   

5.
Myoclonus epilepsy of type 1 (EPM1) is a rare monogenic progressive and degenerative epilepsy, also known under the name Unverricht-Lundborg disease. With the aim of comparing their behavior in vitro, wild-type (wt) human stefin B (cystatin B) and the G4R and the R68X mutants observed in EPM1 were expressed and isolated from the Escherichia coli lysate. The R68X mutant (Arg68Stop) is a peptide of 67 amino acids from the N terminus of stefin B. CD spectra have shown that the R68X peptide is not folded, in contrast to the G4R mutant, which folds like wild type. The wild type and the G4R mutant were unfolded by urea and by trifluoroethanol (TFE). It has been shown that both proteins have closely similar stability and that at pH 4.8, where a native-like intermediate was demonstrated, TFE induces unfolding intermediates prior to the major transition to the all-alpha-helical state. Kinetics of fibril formation were followed by Thioflavin T fluorescence while the accompanying changes of morphology were followed by the transmission electron microscopy (TEM). For the two folded proteins the optimal concentration of TFE producing extensive lag phases and high fibril yields was predenaturational, 9% (v/v). The unfolded R68X peptide, which is highly prone to aggregate, formed amyloid fibrils in aqueous solution and in predenaturing 3% TFE. The G4R mutant exhibited a much longer lag phase than the wild type, with the accumulation of prefibrillar aggregates. Implications for pathology in view of the higher toxicity of prefibrillar aggregates to cells are discussed.  相似文献   

6.
We describe expression, purification, and characterization of three site-specific mutants of recombinant human stefin B: H75W, P36G, and P79S. The far- and near-UV CD spectra have shown that they have similar secondary and tertiary structures to the parent protein. The elution on gel-filtration suggests that recombinant human stefin B and the P36G variant are predominantly monomers, whereas the P79S variant is a dimer. ANS dye binding, reflecting exposed hydrophobic patches, is highest for the P36G variant, both at pH 5 and 3. ANS dye binding also is increased for stefin B and the other two variants at pH 3. Under the chosen conditions the highest tendency to form amyloid fibrils has been shown for the recombinant human stefin B. The P79S variant demonstrates a longer lag phase and a lower rate of fibril formation, while the P36G variant is most prone to amorphous aggregation. This was demonstrated by ThT fluorescence as a function of time and by transmission electron microscopy.  相似文献   

7.
We show that human stefin B, a protease inhibitor from the family of cystatins, is a copper binding protein, unlike stefin A. We have used isothermal titration calorimetry to directly monitor the binding event at pH 7 and pH 5. At pH 7 stefin B shows a picomolar affinity for copper but at pH 5 the affinity is in the nanomolar range. There is no difference in the affinity of copper between the wildtype stefin B (E31 isoform) and a variant (Y31 isoform), whereas the mutant (P79S), which is tetrameric, does not bind copper. The conformation of stefin B remains unaltered by copper binding. It is known that below pH 5 stefin B undergoes a conformational change and amyloid fibril formation. We show that copper binding inhibits the amyloid fibril formation and, to a lesser degree, the initial aggregation. Similarities to and differences from other copper binding amyloidogenic proteins are discussed.  相似文献   

8.
Background. Protein aggregation is a major contributor to the pathogenic mechanisms of human neurodegenerative diseases. Mutations in the CSTB (cystatin B) gene [StB (stefin B)] cause EPM1 (progressive myoclonus epilepsy of type 1), an epilepsy syndrome with features of neurodegeneration and increased oxidative stress. Oligomerization and aggregation of StB in mammalian cells have recently been reported. It has also been observed that StB is overexpressed after seizures and in certain neurodegenerative conditions, which could potentially lead to its aggregation. Human StB proved to be a good model system to study amyloid fibril formation in vitro and, as we show here, to study protein aggregation in cells. Results. Endogenous human StB formed smaller, occasional cytoplasmic aggregates and chemical inhibition of the UPS (ubiquitin–proteasome system) led to an increase in the amount of the endogenous protein and also increased its aggregation. Further, we characterized both the untagged and T‐Sapphire‐tagged StB on overexpression in mammalian cells. Compared with wild‐type StB, the EPM1 missense mutant (G4R), the aggregate‐prone EPM1 mutant (R68X) and the Y31 StB variant (both tagged and untagged) formed larger cytosolic and often perinuclear aggregates accompanied by cytoskeletal reorganization. Non‐homogeneous morphology of these large aggregates was revealed using TEM (transmission electron microscopy) with StB detected by immunogold labelling. StB‐positive cytoplasmic aggregates were partially co‐localized with ubiquitin, proteasome subunits S20 and S26 and components of microfilament and microtubular cytoskeleton using confocal microscopy. StB aggregates also co‐localized with LC3 and the protein adaptor p62, markers of autophagy. Flow cytometry showed that protein aggregation was associated with reduced cell viability. Conclusions. We have shown that endogenous StB aggregates within cells, and that aggregation is increased upon protein overexpression or proteasome inhibition. From confocal and TEM analyses, we conclude that aggregates of StB show some of the molecular characteristics of aggresomes and may be eliminated from the cell by autophagy. Intracellular StB aggregation shows a negative correlation with cell survival.  相似文献   

9.
The role of the aromatic residue at site 75 to protein stability, the mechanism of folding and the mechanism of amyloid-fibril formation were investigated for the human stefin B variant (bearing Y at site 31) and its point mutation H75W. With an aim to reveal the conformation at the cross-road between folding and aggregation, first, the kinetics of folding and oligomer formation by human stefin B(Y31) variant were studied. It was found to fold in three kinetic phases at pH 4.8 and 10% TFE; the pH and solvent conditions that transform the protein into amyloid fibrils at longer times. The same pH leads to the formation of native-like intermediate (known from previous studies of this variant), meaning that the process of folding and amyloid-fibril formation share the same structural intermediate, which is in this case native-like and dimeric. At pH 5.8 and 7.0 stefin B folded to the native state in four kinetic phases over two intermediates. In distinction, the mutant H75W did not fold to completion, ending in intermediate states at all pH values studied: 4.8, 5.8 and 7.0. At pH 4.8 and 5.8, the mutant folded in one kinetic phase to the intermediate of the “molten globule” type, which leads to the conclusion that its mechanism of folding differs from the one of the parent stefin B at the same pH. At pH 7.0 the mutant H75W folded in three kinetic phases to a native-like intermediate, analogous to folding of stefin B at pH 4.8.  相似文献   

10.
By using ThT fluorescence, X-ray diffraction, and atomic force microscopy (AFM), it has been shown that human stefins A and B (subfamily A of cystatins) form amyloid fibrils. Both protein fibrils show the 4.7 A and 10 A reflections characteristic for cross beta-structure. Similar height of approximately 3 nm and longitudinal repeat of 25-27 nm were observed by AFM for both protein fibrils. Fibrils with a double height of 5.6 nm were only observed with stefin A. The fibril's width for stefin A fibrils, as observed by transmission electron microscopy (TEM), was in the same range as previously reported for stefin B (Zerovnik et al., Biochem Biophys Acta 2002;1594:1-5). The conditions needed to undergo fibrillation differ, though. The amyloid fibrils start to form at pH 5 for stefin B, whereas in stefin A, preheated sample has to be acidified to pH < 2.5. In both cases, adding TFE, seeding, and alignment in a strong magnetic field accelerate the fibril growth. Visual analysis of the three-dimensional structures of monomers and domain-swapped dimers suggests that major differences in stability of both homologues stem from arrangement of specific salt bridges, which fix alpha-helix (and the alpha-loop) to beta-sheet in stefin A monomeric and dimeric forms.  相似文献   

11.
A synthetic gene coding for the human intracellular cysteine proteinase inhibitor, stefin B, was constructed from 13 chemically synthesized oligonucleotides according to the method of Khorana. The gene was inserted into the plasmid vector pTZ, amplified and sequenced. For expression, a temperature-inducible system producing fusion proteins was used. With the vector pEx31A containing the synthetic cystatin B gene, E. coli strain 537 produced a fusion protein of the N-terminal part of bacteriophage MS-2 polymerase and [Met-2Gly-1]stefin B. Lysates of the induced bacteria were inhibitorily active against papain. The fusion protein was expressed in high yield (about 20% of total E. coli proteins) and mostly deposited as inclusion bodies. The unfolded fusion protein was partially purified in the presence of urea. After refolding, approx. 6% of the protein was inhibitorily active against papain, human cathepsin H and B. Des[Met1,2(2)]stefin B was released by cyanogen bromide cleavage of the fusion protein and identified by N-terminal amino-acid sequence analysis. The non-separated cleavage products were also inhibitorily active after refolding. The estimated inhibition constants for the fusion protein and its cleavage products were similar to those reported for natural stefin B.  相似文献   

12.
Protein aggregation is central to most neurodegenerative diseases, as shown by familial case studies and by animal models. A modified 'amyloid cascade' hypothesis for Alzheimer's disease states that prefibrillar oligomers, also called amyloid-beta-derived diffusible ligands or globular oligomers, are the responsible toxic agent. It has been proposed that these oligomeric species, as shown for amyloid-beta, beta2-microglobulin or prion fragments, exert toxicity by forming pores in membranes, initiating a cascade of detrimental events for the cell. Interaction of granular aggregates and globular oligomers of an amyloidogenic protein, human stefin B, with model lipid membranes and monolayers was studied. Prefibrillar oligomers/aggregates of stefin B are shown to cause concentration-dependent membrane leaking, in contrast to the homologous stefin A. Prefibrillar oligomers/aggregates of stefin B also increase the surface pressure at an air-water interface, i.e. they have amphipathic character and are surface seeking. In addition, they show stronger interaction with 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] monolayers than native stefin A or nonaggregated stefin B. Prefibrillar aggregates interact predominantly with acidic phospholipids, such as dioleoylphosphatidylglycerol or dipalmitoylphosphatidylserine, as shown by calcein release experiments and surface plasmon resonance. The same preparations are toxic to neuroblastoma cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, again in contrast to the homologue stefin A, which does not aggregate under any of the conditions studied. This study is aimed to contribute to the general model of cellular toxicity induced by prefibrillar oligomers of amyloidogenic proteins, not necessarily involved in pathology.  相似文献   

13.
Trifluoroethanol (TFE) has been used to probe differences in the stability of the native state and in the folding pathways of the homologous cysteine protein inhibitors, human stefin A and B. After complete unfolding in 4.5 mol/L GuHCl, stefin A refolded in 11% (vol/vol) TFE, 0.75 mol/L GuHCl, at pH 6.0 and 20 degrees C, with almost identical first-order rate constants of 4.1 s-1 and 5.5 s-1 for acquisition of the CD signal at 230 and 280 nm, respectively, rates that were markedly greater than the value of 0.11 s-1 observed by the same two probes when TFE was absent. The acceleration of the rates of refolding, monitored by tyrosine fluorescence, was maximal at 10% (vol/vol) TFE. Similar rates of refolding (6.2s-1 and 7.2 s-1 for ellipticity at 230 and 280 nm, respectively) were observed for stefin A denatured in 66% (vol/vol) TFE, pH 3.3, when refolding to the same final conditions. After complete unfolding in 3.45 mol/L GuHCl, stefin B refolded in 7% (vol/vol) TFE, 0.57 mol/L GuHCl, at pH 6.0 and 20 degrees C, with a rate constant for the change in ellipticity at 280 nm of 32.8 s-1; this rate was only twice that observed when TFE was absent. As a major point of distinction from stefin A, the refolding of stefin B in the presence of TFE showed an overshoot in the ellipticity at 230 nm to a value 10% greater than that in the native protein; this signal relaxed slowly (0.01 s-1) to the final native value, with little concomitant change in the near-ultraviolet CD signal; the majority of this changes in two faster phases. After denaturation in 42% (vol/vol) TFE, pH 3.3, the kinetics of refolding to the same final conditions exhibited the same rate-limiting step (0.01 s-1) but were faster initially. The results show that similarly to stefin A, stefin B forms its hydrophobic core and predominant part of the tertiary structure faster in the presence of TFE. The results imply that the alpha-helical intermediate of stefin B is highly structured. Proteins 1999;36:205-216.  相似文献   

14.
Cloning a synthetic gene for human stefin B and its expression in E. coli   总被引:1,自引:0,他引:1  
A gene coding for human stefin B was synthesized by the solid-phase phosphite method and cloned in the pUC8 cloning vector. The insert with the verified DNA sequence was subcloned into two expression vectors and expressed in E. coli as a fusion protein with beta-galactosidase and as a native protein. The CNBr cleaved fusion protein and the native recombinant stefin B were inhibitory to papain and reacted with antibodies against human stefin B.  相似文献   

15.
Progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder, characterized by severe, stimulus-sensitive myoclonus and tonic-clonic seizures. The EPM1 locus was mapped to within 0.3 cM from PFKL in chromosome 21q22.3. The gene for the proteinase inhibitor cystatin B was recently localized in the EPM1 critical region, and mutations were identified in two EPM1 families. We have identified six nucleotide changes in the cystatin B gene of non-Finnish EPM1 families from northern Africa and Europe. The 426G-->C change in exon 1 results in a Gly4Arg substitution and is the first missense mutation described that is associated with EPM1. Molecular modeling predicts that this substitution severely affects the contact of cystatin B with papain. Mutations in the invariant AG dinucleotides of the acceptor sites of introns 1 and 2 probably result in abnormal splicing. A deletion of two nucleotides in exon 3 produces a frameshift and truncates the protein. Therefore, these four mutations are all predicted to impair the production of functional protein. These mutations were found in 7 of the 29 unrelated EPM1 patients analyzed, in homozygosity in 1, and in heterozygosity in the others. The remaining two sequence changes, 431G-->T and 2575A-->G, probably represent polymorphic variants. In addition, a tandem repeat in the 5' UTR (CCCCGCCCCGCG) is present two or three times in normal alleles. It is peculiar that in the majority of patients no mutations exist within the exons and splice sites of the cystatin B gene.  相似文献   

16.
To contribute to the question of the putative role of cystatins in Alzheimer disease and in neuroprotection in general, we studied the interaction between human stefin B (cystatin B) and amyloid-β-(1–40) peptide (Aβ). Using surface plasmon resonance and electrospray mass spectrometry we were able to show a direct interaction between the two proteins. As an interesting new fact, we show that stefin B binding to Aβ is oligomer specific. The dimers and tetramers of stefin B, which bind Aβ, are domain-swapped as judged from structural studies. Consistent with the binding results, the same oligomers of stefin B inhibit Aβ fibril formation. When expressed in cultured cells, stefin B co-localizes with Aβ intracellular inclusions. It also co-immunoprecipitates with the APP fragment containing the Aβ epitope. Thus, stefin B is another APP/Aβ-binding protein in vitro and likely in cells.  相似文献   

17.
Molecular dynamics study was performed on the cysteine proteinase inhibitor stefin B. Structure of inhibitor from the complex with papain was used as a starting point. Amino terminal "trunk" of the inhibitor which lies extended along the cleft of the enzyme in the complex, folded onto the body of inhibitor during MD simulation, thereby reducing the total and particularly hydrophobic surface exposed to the solvent. This effect counterbalances hydrophobic contribution of the "trunk" and explains why its deletion in stefin B and related inhibitors doesn't reduce the dissociation constant. The rest of stefin B conformation is conserved together with main chain hydrogen bonds. Fluctuations of C alpha atoms resembles crystallographic B factors with exception of residues in contact with enzyme.  相似文献   

18.
We report that Pro74 in human stefin B is critical for fibril formation and that proline isomerization plays an important role. The stefin B P74S mutant did not fibrillate over the time of observation at 25 °C, and it exhibited a prolonged lag phase at 30 °C and 37 °C. The peptidyl prolyl cis/trans isomerase cyclophilin A, when added to the wild-type protein, exerted two effects: it prolonged the lag phase and increased the yield and length of the fibrils. Addition of the inactive cyclophilin A R55A variant still resulted in a prolonged lag phase but did not mediate the increase of the final fibril yield. These results demonstrate that peptidyl prolyl cis/trans isomerism is rate-limiting in stefin B fibril formation.  相似文献   

19.
The folding of human stefin B has been studied by several spectroscopic probes. Stopped-flow traces obtained by circular dichroism in the near and far UV, by tyrosine fluorescence, and by extrinsic probe ANS fluorescence are compared. Most (60 ± 5%) of the native signal in the far UV circular dichroism (CD) appeared within 10 ms in an unresolved “burst” phase, which was followed by a fast phase (t = 83 ms) and a slow phase (t = 25 s) with amplitudes of 30% and 10%, respectively. Similar fast and slow phases were also evident in the near UV CD, ANS fluorescence, and tyrosine fluorescence. By contrast, human stefin A, which has a very similar structure, exhibited only one kinetic phase of folding (t = 6 s) detected by all the spectroscopic probes, which occurred subsequent to an initial “burst” phase observed by far UV CD. It is interesting that despite close structural similarity of both homologues they fold differently, and that the less stable human stefin B folds faster by an order of magnitude (comparing the non-proline limited phase). To gain more information on the stefin B folding mechanism, effects of pH and trifluoroethanol (TFE) on the fast and slow phases were investigated by several spectroscopic probes. If folding was performed in the presence of 7% of TFE, rate acceleration and difference in the mechanism were observed. Protein 32:296–303, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO) mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the cell medium reverted this phenotype, as imaged by confocal microscopy. To monitor the identity of proteins embedded within aggregates in wild type (wt) and KO cells, the insoluble cell lysate fractions were isolated and analyzed by mass spectrometry. Chaperones, tubulins, dyneins, and proteosomal components were detected in the insoluble fraction of wt cells but not in KO aggregates. In contrast, the insoluble fraction of KO cells exhibited increased levels of apolipoprotein E, fibronectin, clusterin, major prion protein, and serpins H1 and I2 and some proteins of lysosomal origin, such as cathepsin D and CD63, relative to wt astrocytes. Analysis of autophagy activity demonstrated that this pathway was less functional in KO astrocytes. In addition, synthetic dosage lethality (SDL) gene interactions analysis in Saccharomyces cerevisiae expressing human stefin B suggests a role in transport of vesicles and vacuoles These activities would contribute, directly or indirectly to completion of autophagy in wt astrocytes and would account for the accumulation of protein aggregates in KO cells, since autophagy is a key pathway for the clearance of intracellular protein aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号