首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The genital region of seven species of Tubificidae has been studied by SEM (Scanning Electron Microscopy). The form and the position of penial and spermathecal chaetae, male and spermathecal pores and other special structures have been examined. Peristodrilus montanus shows a special system to hold the partner: the penial chaetae anchor in an elaborated structure of the body wall formed between the spermathecal pores, the `anchorage bridge'. Protuberodrilus tourenqui has a long glandular porophore with the male pores at the tip, allowing contact with the spermathecal pores which are located in deep, close to the mid-ventral line of the body. The grooved and strongly curved penial chaetae of Rhyacodrilus falciformis seem to be used both for attachment and for sperm transfer, entering into the lateral spermathecal pores. The embrace of the partners, as suggested by observations on Psammoryctides barbatus, Potamothrix bavaricus, Potamothrix hammoniensis and Potamothrix heuscheri, seems to be another important mechanism to fix contact between male and spermathecal pores and allow sperm transfer. The spermathecal chaetae could be interpreted as piercing chaetae with a chemical or mechanical stimulating role. Sensitive cilia near the penial chaetae seem to be used by the three rhyacodrilines studied to find the correct anchorage place. There is a great variety of structures which appear to be used for attachment and sperm transfer in tubificids, and consequently their role in the evolution of the whole family may be profound.  相似文献   

2.
As the structure and arrangement of chaetae are highly specific for annelid species and higher taxonomic entities, we assume that rather conservative information guarantees formation of specific chaetae. Each chaeta of an annelid is formed within an ectodermal invagination, and the modulation of the apical microvilli pattern of the basalmost cell of this invagination determines the structure of the chaeta. Any hypothesis of the homology of chaetae could thus be tested by examining the process of chaetal formation. Investigations into the ultrastructure and formation of hooded hooks in different capitellids and spionids revealed that these chaetae can be homologized. The hood of each of their hooded hooks is formed by elongation of two rings of microvilli peripheral to the chaetal anlage, which give rise to the inner and outer layers of the hood. The hood layers are well separated and surround an empty space. Superficially similar hooded hooks are described for certain Eunicida. Presently available cladistic analyses suggest that the hooded hooks of eunicidans evolved independently of those in Capitellidae and Spionidae. Compared with the latter two families, we therefore expected to find differences in chaetogenesis of the hooded hooks in the eunicids Lumbrineris (Scoletoma) fragilis and Lumbrineris tetraura (Lumbrineridae). This was the case. In these eunicidans, the hood was formed by the bisected apical wall of the chaetoblast right after the mid‐apical section of the chaeta had been sunk deeply into the chaetoblast during its formation. The apical wall generated a brush of microvilli that preformed the hood. Because the microvilli of the hood showed some accelerated differentiation, they soon merged with those of the slowly growing setal shaft to form the broad manubrium of the hooded hook in lumbrinerids. Our study confirms the predicted differences in chaetogenesis of the superficially similar hooded hooks of capitellids and spionids compared with those of eunicids.  相似文献   

3.
The systematic position of Orbiniidae within Polychaeta is still uncertain. In order to provide additional comparative data, we investigated the chaetal arrangement in this family, which is considered valuable for polychaete systematics. Specimens of Scoloplos armiger, Orbinia latreillii, and Pettibonella multiuncinata were examined by SEM and serial sections analysed by computer aided 3D-reconstructions. The obtained data suggest that the chaetal arrangement of Orbiniidae resembles that of other sedentary polychaetes in only a few respects. Transverse rows are only present in the main, anterior part of the chaetal patches of thoracic neuropods. The position of the formative site indicates homology with the transverse rows of several sedentary polychaete taxa. The chaetal patches thus differ significantly from those known in Apistobranchidae. Independent rows with an own caudal formative site, which run along the caudoventral edge of the chaetal patches, resemble the neuropodial ventral longitudinal rows known in Spionidae and related taxa. The abdominal neuropodia of S. armiger and O. latreillii bear longitudinal rows of chaetae. These are reorientated during ontogenetic chaetiger transformation and become the transverse rows of the thoracic chaetal patches. 3D reconstruction of S. armiger revealed that the notopodial chaetal bundles are organized in rows as well. Notopodia and abdominal neuropodia bear deep reaching supportive chaetae. They are the first chaetae formed during neuropodial development and reside dorsally to the longitudinal row of capillary chaetae. Neither position nor structure indicates homology with the supportive chaetae of other sedentary polychaetes. Spionidae and related taxa are thus the only sedentary polychaetes, which specifically resemble Orbiniidae in certain aspects of their chaetal arrangement. Dedicated to Prof. Dr. Wilfried Westheide on the occasion of his 70th birthday.  相似文献   

4.
Echiura is traditionally regarded as a small phylum of unsegmented spiralian worms. Molecular analyses, however, provide unquestionable evidence that Echiura are derived annelids that lost segmentation. Like annelids, echiurans possess chaetae, a single ventral pair in all species and one or two additional caudal hemi-circles of chaetae in two subgroups, but their evolutionary origin and affiliation to annelid chaetae are unresolved. Since annelids possess segmental pairs of dorsal (notopodial) and ventral (neuropodial) chaetae that are arranged in a row, the ventral chaetae in Echiura either represent a single or a paired neuropodial group of chaetae, while the caudal circle may represent fused rows of chaetae. In annelids, chaetogenesis is generally restricted to the ventral part of the notopodial chaetal sac and to the dorsal part of the neuropodial chaetal sac. We used the exact position of the chaetal formation site in the echiuran species, Thalassema thalassemum (Pallas, 1766) and Echiurus echiurus (Pallas, 1767), to test different hypotheses of the evolution of echiurid chaetae. As in annelids, a single chaetoblast is responsible for chaetogenesis in both species. Each chaeta of the ventral pair arises from its own chaetal sac and possesses a lateral formation site, evidencing that the pair of ventral chaetae in Echiura is homologous to a pair of neuropodia that fused on the ventral side, while the notopodia were reduced. Both caudal hemi-circles of chaetae in Echiurus echiurus are composed of several individual chaetal sacs, each with its own formative site. This finding argues against a homology of these hemi-circles of chaetae and annelids’ rows of chaetae and leads to the hypothesis that the caudal chaetal rings evolved once within the Echiura by multiplication of ventral chaetae.  相似文献   

5.
To address the functional contributions of capillary chaetae in the maldanid polychaete Clymenella torquata, we compared irrigation efficiency and tube structure for animals with intact and trimmed capillary chaetae. We measured pumping rates for worms before and after they were anaesthetized and subjected either to capillary trimming or mock trimming, i.e. handling without trimming. Worms with trimmed chaetae were significantly less effective at moving water through their tubes than those with intact chaetae. There were no significant differences in the ability of control worms to move water within their tubes. No significant changes in rates of peristalsis were observed among experimental or control groups. These data strongly suggest that body musculature and capillary chaetae work in concert to hold worms in position within tubes during peristaltic pumping. When chaetae are shortened, the body musculature must contract to a greater degree, increasing the functional diameter of the worm to achieve the necessary traction with the tube wall, resulting in less efficient irrigation. We also compared the inner diameters of original field tubes to tubes built by control worms or worms after capillary trimming. The inner diameters of new tubes built by worms with shortened chaetae were larger than their original tubes, while those of both control groups were not. One possible explanation is that the chaetae have a sensory role and shortened chaetae send the false message that the nascent tube walls are farther away than they are, the body contracts in compensation and the tube is widened, however this idea has not been tested.  相似文献   

6.
Hausen  Harald 《Hydrobiologia》2005,(1):37-52
Annelid chaetae are epidermal extracellular structures that are in general clearly visible from the exterior. Their structure is highly diverse, especially within the Polychaeta, and each species shows a specific pattern of chaetae. Chaetae have therefore gained immense significance for species determination, making them the best studied structures in polychaetes. The shape of chaetae is determined by the temporal and spatial modification of the microvilli pattern of a single cell, the chaetoblast. As chaetae are species specific, the process of their formation must be under strict control and the information needed to form certain chaetae must be highly conservative. It can be assumed that corresponding chaetogenesis is caused by commonly inherited information. Thus, comparative chaetogenesis can help to test hypotheses on the homology of certain types of chaetae and help to unravel the influence of functional constraints on the shape of chaetae. Different types of chaetae are compared here and the present state of our knowledge of their structure and formation is used to present some homology hypotheses. There are some strong arguments for a homology of uncini and certain hooks and hooded hooks. Acicula are compared to other supportive setae and the significance of the arrangement of chaeta for phylogenetic considerations is shown. Coding issues are provided in order to facilitate inclusion of information on chaetae into data matrices.  相似文献   

7.
Sipuncula is a small taxon of worm-like marine organisms of still uncertain phylogenetic position. Sipunculans are characterized by an unsegmented body composed of a trunk into which the anterior part, the introvert, can be withdrawn. The group has been placed at various positions within Metazoa; currently, it is either seen as sister group of a clade comprising Mollusca and Annelida or as sister to each of these. An in-group position in either Mollusca or Annelida has usually been precluded till now due to the lack of so-called annelid or molluscan “key-characters” such as segmentation and chaetae or the radula. In the development of certain taxa the trochophore stage is followed by a planktonic larva, the pelagosphera, which might exhibit phylogenetically important structures. Among these is the buccal organ, which has been considered homologous either to the ventral pharyngeal organ present in many sedentary polychaetes or to the radular apparatus of molluscs. In the present paper, the ventral pharynx of the pelagosphera larva of Phascolosoma agassizii is investigated by transmission electron microscopy. The pharynx comprises dorsolateral ciliary folds, a muscle bulb formed by transverse muscle fibres with large intercellular spaces, and an investing muscle. A tongue-like organ is lacking. These results show great structural correspondences to the ventral pharynx of polychaetes, especially to that of the flabelligerid Diplocirrus longisetosus. In contrast, there are no signs of structural similarities to the corresponding structures of molluscs. Thus evidence increases that Sipuncula are closely related to annelids; moreover, an in-group position of Sipuncula within Annelida, as suggested by recent molecular studies, is not precluded by the present data. Instead these studies find additional support. Hence the lack of segmentation and chitinous chaetae in Sipuncula would be a secondary rather than a primary situation, as has recently been shown for Echiura and Pogonophora.  相似文献   

8.
Sabellid and sabellariid polychaetes are regarded as sister groups in a number of recent phylogenetic analyses. This is based mainly on a shared specific arrangement of chaetae referred to as chaetal inversion. Remarkably, the uncini have a notopodial position in the abdomen, whereas capillary chaetae occur in the neuropodia in both taxa in contrast to the situation in putative relatives. However, in sabellids uncini and capillary chaetae change their position completely at the border between thorax and abdomen, whereas uncini are missing in the parathorax of Sabellariidae. Due to this difference the significance of the chaetal inversion for systematics has been subject to discussion for years. Serial semithin sections of parapodia of the Sabellidae Sabella pavonina, Branchiomma bombyx, Fabricia stellaris, and of the Sabellariidae Sabellaria alveolata were studied in order to obtain detailed information on their chaetal arrangement and sites of chaetal origin. SEM investigations and computer-aided 3D-reconstructions provide deep insight into the spatial organization of the rami. Though differing externally, the principal chaetal arrangement and the location of the formative sites turned out to be almost identical within the species of Sabellidae. Most chaetae are aligned in straight transverse rows with a dorsal site of origin within neuropodia and a ventral one in notopodia as is common in sedentary polychaetes. Semicircular and spiral arrangements are revealed to be modified transverse rows. Only in thoracic notopodia does an additional dorsocaudal formative site form distinct rows. The chaetal inversion in Sabellidae is additionally characterized by an abrupt change of capillary chaetae and uncini along with a sudden change of the parapodial morphology at the border between thorax and abdomen. All chaetae of S. alveolata are aligned in transverse rows with the same location of the formative sites as in sabellids and other sedentary polychaetes. However, in contrast to sabellids the chaetae are not inverted across a parathoracic abdominal border. Moreover, there is no inversion of the parapodial structure from parathorax to abdomen and the neuropodial chaetal composition changes gradually from parathorax to abdomen. The chaetal arrangement in Sabellariidae thus cannot be described as inverted along the body-axis as in Sabellidae. Evolutionary steps implied by the assumption of an inverted chaetal pattern in a supposed common ancestor are discussed. It is concluded that the specific chaetal arrangement of Sabellidae and Sabellariidae arose independently and therefore provides no support for a sistergroup relationship of sabellids and sabellariids.  相似文献   

9.
10.
Some South American poison frogs (Dendrobatidae) are chemically defended and use bright aposematic colors to warn potential predators of their unpalatability. Aposematic signals are often frequency‐dependent where individuals deviating from a local model are at a higher risk of predation. However, extreme diversity in the aposematic signal has been documented in poison frogs, especially in Oophaga. Here, we explore the phylogeographic pattern among color‐divergent populations of the Little Devil poison frog Oophaga sylvatica by analyzing population structure and genetic differentiation to evaluate which processes could account for color diversity within and among populations. With a combination of PCR amplicons (three mitochondrial and three nuclear markers) and genome‐wide markers from a double‐digested RAD (ddRAD) approach, we characterized the phylogenetic and genetic structure of 199 individuals from 13 populations (12 monomorphic and 1 polymorphic) across the O. sylvatica distribution. Individuals segregated into two main lineages by their northern or southern latitudinal distribution. A high level of genetic and phenotypic polymorphism within the northern lineage suggests ongoing gene flow. In contrast, low levels of genetic differentiation were detected among the southern lineage populations and support recent range expansions from populations in the northern lineage. We propose that a combination of climatic gradients and structured landscapes might be promoting gene flow and phylogenetic diversification. Alternatively, we cannot rule out that the observed phenotypic and genomic variations are the result of genetic drift on near or neutral alleles in a small number of genes.  相似文献   

11.
Summary In recently collected specimens of Acanthobdella peledina the nervous system, the genital organs and the coelomic organisation were reinvestigated after complete serial sections. These anatomical results are schematically represented. In addition, the integument, the chaetae and the peripheral muscle layer were investigated by electron microscopy. In general, the results confirm Livanow's classic monograph (1906), with the exception of a few details. The body apparently possesses neither a prostomium nor an achaetous buccal region (peristomium). The number of 29 true segments is concluded from the number of segmental ganglia. The five anteriormost segments, each with four pairs of hookshaped chaetae arranged around the mouth opening, are considered to be functionally equivalent to an anterior sucker. The ultrastructure of the integument and the chaetae generally conforms to the typical annelidan pattern. The muscle cells are of the typical hirudinean type. The outer male genital pore is positioned in segment 10; the female organs open in segment 11 directly behind the septum between segments 10 and 11. The main emphasis is laid on the evaluation of the position of the taxon within the Clitellata, including a discussion of the Branchiobdellida, and the cladograms presented show the Acanthobdellida to be the sister group of the Euhirudinea. Characters shared by the Branchiobdellida and Hirudinea (including A. peledina) are considered to be convergently evolved.  相似文献   

12.
Schulze, A. 2000. Ultrastructure of opisthosomal chaetae in Vestimentifera (Pogonophora, Obturata) and implications for phylogeny. — Acta Zoologica (Stockholm) 82 : 127–135
The posterior segmented body region of Vestimentifera bears rows of uncini that function to anchor the animal within its tube. SEM studies of five vestimentiferan species reveal intraspecific and interspecific variation in the number of chaetigerous segments and the arrangement of uncini within a given segment. The portion of an uncinus that extends beyond the epidermis comprises two opposing groups of teeth that probably correspond to the capitium and subrostral process of polychaete uncini, and a distinct protuberance between them, interpreted as a rostrum. In Ridgeia piscesae , the uncini are formed by chaetal follicles, consisting of a chaetoblast, a follicle cell and an epidermis cell. The chaetal shaft is elongate and composed of up to 40 hollow cylinders that are invaded at their base by microvilli from the apical part of the chaetoblast. Opisthosomal chaetae in perviate Pogonophora are usually restricted to four per segment and are of a rod-shaped type. It is hypothesized that the rod-shaped chaetae represent reduced hooked chaetae probably derived from a condition such as found in Monilifera. Uncini of Pogonophora, Sabellida, Terebellida and Oweniida are considered homologous but details of chaetal design may be due to functional adaptations and thus do not represent reliable characters for phylogenetic studies on higher taxonomic levels than genera or potentially families.  相似文献   

13.
Most myzostomids are ectocommensals of crinoids on which they move freely. Their locomotion is ensured by five pairs of parapodia located laterally below their trunk. Each parapodium in Myzostoma cirriferum is a conical structure that includes a hook-like chaeta, replacement chaetae and an aciculum. Structure and ultrastructure of the myzostomid chaetae are similar to those of polychaetes: they are formed by a chaetoblast, which gives rise to microvilli where chaetal material is assembled on the outer surface. Myzostoma cirriferum walks on its host. It moves the anterior part, the posterior part or the lateral parts forwards but is able to rotate of 180° on itself. Its locomotion entirely depends on parapodial motions and not on trunk movements. Three pairs of muscles are involved in parapodial motions: parapodium flexor and parapodium extensor, aciculum protractor and aciculum retractor, and hook protractor with conjunctor. A functional model is proposed for explaining the global motion of a parapodium in M. cirriferum that may be extended to all ectocommensal myzostomids.  相似文献   

14.
15.
René Hessling 《Hydrobiologia》2003,496(1-3):225-239
The Echiura have been placed in close phylogenetic affinity to the Annelida on the basis of numerous homologous characters including the mode of development, the nearly identical formation of a trochophore larva, as well as the development and ultrastructure of chaetae and spermatozoa. Furthermore, phylogenetic analysis of elongation factor-1 gene sequences supports placement of the Echiura within the Annelida. Nevertheless, the Echiura are generally excluded from the Annelida due to their lack of segmentation. However, it must be considered that this lack could represent a secondary condition and that Echiura are derived from formerly segmented ancestors. In the present study, the combination of methods applied reveals several novel aspects of the central nervous system in developmental stages of Bonellia viridis. The most important of these is the metameric organization of the ventral nerve cord. Antibodies against different neurotransmitters label discrete repetitive units of perikarya in the ventral nerve cord. This organisation is additionally supported by the distribution of peripheral nerves as shown by labelling of neurotubules. These nerves are clearly paired and are evenly distributed, corresponding to the serial units of serotoninergic neurons. Different methods of computer-aided three-dimensional reconstruction display the precise spatial distribution of perikarya and peripheral nerves allowing the repetitive units to be discerned on the basis of relative size, position and number of labelled cells. The repetitive units in the nervous system of B. viridis correspond to segmental ganglia of various Annelida and are interpreted as an indication that Echiura are derived from formerly segmented ancestors, thus supporting the systematic inclusion of the Echiura within the Annelida.  相似文献   

16.
During a study carried out on the subfamily Exogoninae (Syllidae) from Australia, several specimens of a new genus and species were found in samples of dead coral substrate from Western Australia. They have long palps, fused except for a terminal notch, long median and two short lateral antennae, a single pair of short tentacular cirri, and short dorsal cirri, somewhat longer than the parapodial lobes. These characters resemble those of the genus Exogone Örsted, 1845. However, all these appendages are articulated. The chaetae are very similar to those of several species of Syllis Lamarck, 1818, having coarse spines on the margin of compound chaetal blades and truncated dorsal simple chaetae. Furthermore, the pharynx begins in chaetiger 3, posterior to the peristomium, as in many species of the genus Syllis; this condition does not occur in any described species of Exogone. The new genus is provisionally proposed to belong to the subfamily Syllinae, although it has some characters typical of the Exogoninae. Examination under the SEM shows another peculiar feature, the nuchal organs are distinctly laterally located. Within the Syllinae, only Paratyposyllis Hartmann-Schröder, 1962 has a single pair of tentacular cirri, but in that genus, the palps are only basally fused.  相似文献   

17.
Summary The mechanisms underlying the formation of veins in the wing ofDrosophila have been studied by means of clonal analysis. To this end the phenotype of vein-suppression mutants (crossveinless, veinlet andradius incompletus), the vein-addition mutantplexus and a mutant causing the appearance of chaetae on the wing veins (hairy) were analysed both singly and in double mutant combinations. Subsequently various combinations of these mutants were studied in genetic mosaics. The results indicate that the cells of the dorsal surface of the wing express their genetic constitution autonomously with respect to these mutations. The ventral surface, however, has a non-autonomous behaviour with respect to vein formation but an autonomous one with respect to chaeta differentiation. Since chaeta differentiation is determined before puparium formation, i.e. before both wing surfaces some into contact, it is suggested that vein determination results from a genetic decision occurring autonomously and independently in the cells of both wing surfaces, also prior to pupariation. The final extension and course of the wing veins are modulated by cells of the dorsal surface inducing the genetically competent cells of the ventral surface.  相似文献   

18.
Many beetles associated with old trees are on national red lists, but pseudoscorpions living in similar habitats have received little attention. This study reports the habitat and occurrence patterns of two species of pseudoscorpions living in hollow trees. Their occurrence has been assessed by sieving wood mould from 274 oaks in southeastern Sweden and from museum specimens collected in Sweden. Larca lata is confined to hollow oaks with a large girth and a plentiful supply of wood mould. Allochernes wideri is much less particular about wood mould volume, trunk diameter and tree species. Larca lata inhabits hollow trunks with characteristics that are typical of very old trees, whereas A. wideri predominantly occurs in trunks in an earlier stage of hollow formation. Larca lata was almost exclusively found in larger assemblages of hollow oaks, which suggests long-term survival may be difficult when the network of suitable hollow trees is too sparse. Larca lata is a rare species in Europe and probably vulnerable to extinction, since it is dependent on a habitat which has declined severely in the last few centuries.  相似文献   

19.
Entomobryidae, the largest collembolan family, is traditionally classified at suprageneric level using a limited set of morphological structures, such as scales, antennal segmentation. Most tribal and subfamilial delimitations appear, however, disputable in the light of recent works. Integrating molecular and morphological evidence, we propose here a revision of the systematics of the family. In addition to traditional taxonomic characters, tergal specialized chaetae (S‐chaetae) are newly introduced, and their patterns are shown to be diversified at all levels from species to subfamilies. S‐chaetotaxic pattern on phylogenetic tree shows that evolution of S‐chaetae is not parallel between the different terga and that their patterns coincide well with the known molecular phylogeny, providing a powerful tool for the systematics of Entomobryidae. Orchesellinae sensu Soto‐Adames et al. (Annals of the Entomological Society of America, 101, 2008, 501); is divided into three subfamilies: Orchesellinae s. s., Bessoniellinae and Heteromurinae, the latter two upgraded from the original tribal level. Entomobryinae sensu Szeptycki (Morpho‐Systematic Studies on Collembola. IV. Chaetotaxy of the Entomobryidae and its Phylogenetical Significance, 1979), is no longer divided into scaled and unscaled tribes, and Lepidosira‐group is transferred from Seirinae to Entomobryinae. A key to subfamilies and tribes and a comparison with previous classifications of the Entomobryidae are provided. This study greatly improves the understanding of primary and secondary characters and erects the fundamental framework for the taxonomy of Entomobryidae.  相似文献   

20.
Variation at two polymorphic allozyme loci (Adh and Gpdh) has been assayed in relation to sternopleural chaetae number in flies derived from a cage population ofD. melanogaster known to be under stabilising selection with respect to chaetae number. Central phenotypes were significantly more heterozygous at these loci than more extreme phenotypes. Analysis of the base popylation and of divergent directional selection lines derived from it suggested that alleles atAdh and Gpdh have a pleiotropic effect on chaetae number or are in strong linkage disequilibrium with chaetae factors. In addition, homozygotes atAdh and Gpdh were observed to have a higher variance in chaetae number than heterozygotes. It is concluded that additive and homeostatic models of gene action might both partly explain the higher heterozygosity of central phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号