首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epitope imprinting is a promising technique for fabrication of novel diagnostic tools. In this study, an epitope imprinted methodology for recognition of target epitope sequence as well as targeted protein infused by bacterial infection in blood samples of patients suffering from brain fever is developed. Template sequence chosen is a ferric iron binding fbp A protein present in Neisseria meningitidis bacteria. To orient the imprinting template peptide sequence on gold surface of electrochemical quartz crystal microbalance (EQCM), thiol chemistry was utilized to form the self‐assembled monolayer on EQCM electrode. Here, synergistic effects induced by various noncovalent interactions extended by multiple monomers (3‐sulfopropyl methacrylate potassium‐salt and benzyl methacrylate) were used in fabricating the imprinting polymeric matrix with additional firmness provided by N,N‐methylene‐bis‐acrylamide as cross‐linker and azo‐isobutyronitrile as initiator. Extraction of template molecule was carried out with phosphate buffer solution. After extraction of epitope molecules from the polymeric film, epitope molecularly imprinted polymeric films were fabricated on EQCM electrode surface. Nonimprinted polymers were also synthesized in the similar manner without epitope molecule. Detection limit of epitope molecularly imprinted polymers and imprinting factor (epitope molecularly imprinted polymers/nonimprinted polymers) was calculated 1.39 ng mL?1 and 12.27 respectively showing high binding capacity and specific recognition behavior toward template molecule. Simplicity of present method would put forward a fast, facile, cost‐effective diagnostic tool for mass health care.  相似文献   

2.
Neisseria meningitidis, a human‐specific bacterial pathogen causes bacterial meningitis by invading the meninges (outer lining) of central nervous system. It is the polysaccharide present on the bacterial capsid that distinguishes various serogroups of N. meningitidis and can be utilized as antigens to elicit immune response. A computational approach identified candidate T‐cell epitopes from outer membrane proteins Por B of N. meningitidis (MC58): (273KGLVDDADI282 in loop VII and 170GRHNSESYH179 in loop IV) present on the exposed surface of immunogenic loops of class 3 outer membrane proteins allele of N. meningitidis. One of them, KGLVDDADI is used here for designing a diagnostic tool via molecularly imprinted piezoelectric sensor (molecularly imprinted polymer‐quartz crystal microbalance) for N. meningitidis strain MC58. Methacrylic acid, ethylene glycol dimethacrylate and azoisobutyronitrile were used as functional monomer, cross‐linker and initiator, respectively. The epitope can be simultaneously bound to methacrylic acid and fitted into the shape‐selective cavities. On extraction of epitope sequence from thus grafted polymeric film, shape‐selective and sensitive sites were generated on electrochemical quartz crystal microbalance crystal, ie, known as epitope imprinted polymers. Imprinting was characterized by atomic force microscopy images. The epitope‐imprinted sensor was able to selectively bind N. meningitidis proteins present in blood serum of patients suffering from brain fever. Thus, fabricated sensor can be used as a diagnostic tool for meningitis disease.  相似文献   

3.
A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2@MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2@MIP nanoparticles were characterized by fluorescence, UV–vis absorption and FT‐IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2@MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2@MIP decreased with increasing CAP by a Stern–Volmer type equation in the concentration range of 40–500 µg L–1. The corresponding detection limit was 5.0 µg L–1. The intra‐day and inter‐day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A composite of the metal–organic framework compound ZIF-8 doped with CdSe quantum dots (QDs) with sensitive and stable luminescence was synthesized, and a molecularly imprinted electrochemiluminescence (ECL) sensor was constructed based on this composite. The ZIF-8@CdSe molecularly imprinted ECL sensor combines the high sensitivity of ECL and the high selectivity of molecular imprinting to realize the sensitive and specific detection of estriol. CdSe QDs and gold nanoparticles were encapsulated within ZIF-8 to obtain the ZIF-8@CdSe QDs/GNP (ZIF@CdSe/GNP) composite. Subsequently, the GNPs were further loaded on the surface of this composite to obtain the GNP/ZIF@CdSe/GNP composite. l -Cysteine was used to immobilize the GNP/ZIF@CdSe/GNP composite on the surface of a gold electrode to obtain the GNP/ZIF@CdSe/GNP-modified gold electrode. A molecularly imprinted polymer (MIP) film was prepared on the surface of the modified electrode by electropolymerization with o-phenylenediamine as the functional monomer and estriol as the template molecule. After elution, estriol could be specifically recognized by the cavities. The readsorption of estriol by the MIP can prevent the coreactant from reaching the electrode surface through the cavities, thereby weakening ECL. A good linear relationship existed between the ∆ECL and lg C of estriol concentrations of 1 × 10−14 to 1 × 10−9 mol·L−1. The detection limit was as low as 8.9 × 10−16 mol·L−1. The sensor was applied in the determination of estriol in serum samples with a recovery of 97.0–102%.  相似文献   

5.
《Chirality》2017,29(7):340-347
Acrylamide (AM) was copolymerized with ethylene glycol dimethacrylate (EGDMA) in the presence of (R )‐1,1′‐binaphthalene‐2‐naphthol (BINOL) as the template molecules on the surface of silica gel by a free radical polymerization to produce a chiral stationary phase based on the surface molecularly imprinted polymer (SMIP‐CSP). The SMIP‐CSP showed a much better separation factor (α = 4.28) than the CSP based on the molecularly imprinted polymer (MIP‐CSP) without coating on the silica gel (α = 1.96) during the chiral separation of BINOL enantiomers by high‐performance liquid chromatography. The influence of the pretreatment temperature and the content of the template molecule ((R )‐BINOL) of the SMIP‐CSP, and the mobile phase composition on the separation of the racemic BINOL were systematically investigated.  相似文献   

6.
The aim of this work was to produce a thin, flexible and diffusion able molecularly imprinted polymeric matrix with good template accessibility. Membranes were prepared using a non‐covalent molecular imprinting approach and their physical characteristics and binding capabilities investigated. Two materials were used, a poly(tri‐ethyleneglycol dimethyacrylate‐co‐methyl methacrylate‐co‐methacrylic acid) copolymer containing 14% cross‐linker and a monomer (g) to porogen (ml) ratio of 1:0.5 (A), and a blend of poly(TEGMA‐co‐MAA) and polyurethane (B). The polyurethane was added to improve membrane flexiblity and stability. The polymers were characterized using AFM, SEM and nitrogen adsorption, whilst binding was evaluated using batch‐rebinding studies. For all membranes the specific surface area was low (<10 m2/g). MIP (A) films were shown to bind specifically at low concentrations but specific binding was masked by non‐specific interactions at elevated concentrations. Selectivity studies confirmed specificity at low concentrations. KD approximations confirmed a difference in the population of binding sites within NIP and MIP films. The data also indicated that at low concentrations the ligand‐occupied binding site population approached homogeneity. Scanning electron microscopy images of membrane (B) revealed a complex multi‐layered system, however these membranes did not demonstrate specificity for the template. The results described here demonstrate how the fundamental parameters of a non‐covalent molecularly imprinted system can be successfully modified in order to generate flexible and physically tolerant molecularly imprinted thin films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A simple high performance liquid chromatography method HPLC‐UV for simultaneous enantiomeric determination of propranolol, metoprolol, pindolol, and atenolol in natural water samples was developed and validated, using a molecularly imprinted polymer solid‐phase extraction. To achieve this purpose, Lux® Cellulose‐1/Sepapak‐1 (cellulose tris‐(3,5‐dymethylphenylcarbamate)) (Phenomenex, Madrid, Spain) chiral stationary phase was used in gradient elution and normal phase mode at ambient temperature. The gradient elution program optimized consisted of a progressive change of the mobile phase polarity from n‐hex/EtOH/DEA 90/10/0.5 (v/v/v) to 60/40/0.5 (v/v/v) in 13 min, delivered at a flow rate of 1.3 ml/min and a sudden change of flow rate to 2.3 ml/min in 1 min. Critical steps in any molecularly imprinted polymer extraction protocol such as the flow rate to load the water sample in the cartridges and the breakthrough volume were optimized to obtain the higher extraction recoveries for all compounds. In optimal conditions (100 ml breakthrough volume loaded at 2.0 ml/min), extraction recoveries for the four pairs of β‐blockers were near 100%. The MIP‐SPE‐HPLC‐UV method developed demonstrates good linearity (R2 ≥ 0.99), precision, selectivity, and sensitivity. Method limit detection was 3.0 µg/l for propranolol and pindolol enantiomers and 20.0 and 22.0 µg/l for metoprolol and atenolol enantiomers, respectively. The proposed methodology should be suitable for routine control of these emerging pollutants in natural waters for a better understanding of the environmental impact and fate. Chirality 24:860–866, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO(2)/Si molds. The morphology of the MIP gratings is studied by optical and atomic force microscopes. MIP 2D-DGs exhibit 2D optical diffraction patterns, and measurement of changes in diffraction efficiency is used as sensor response. The refractive index of the micropatterned MIP material was estimated, via solvent index matching experiments, to be 1.486. Immersion of a MIP 2D-DG in different solutions of target-antibiotic enrofloxacin leads to significant variations in diffraction efficiency, demonstrating target-molecule detection. On the other hand, no significant response is observed for both control experiments: MIP grating exposed to a non-retained analyte and an equivalent non-imprinted polymer grating exposed to the target analyte, showing highly specific antibiotic label-free optical recognition.  相似文献   

9.
A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe3O4@Au nanoparticles modified with 6‐mercapto‐beta‐cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N ,N ′‐methylenebisacrylamide as a cross‐linking agent. Cinchonine was specifically recognized by the 6‐mercapto‐beta‐cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy)32+. Cinchonine concentrations of 1 × 10?10 to 4 × 10?7 mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10?11 mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%.  相似文献   

10.
The cystine‐bridged cyclic peptide hormones (CBCPHs) represent signature structural feature as well as unique biological activity. In this study, three CBCPHs have been identified and characterized, namely, oxytocin, atrial natriuretic peptides (ANPs), and brain natriuretic peptides (BNPs). Because research has shown that ANPs and BNPs are powerful diagnostic biomarkers for heart disease, a highly laudable endeavor would be to develop a novel sensor for detecting ANP or BNP levels. Therefore, an amphiphilic monomer Acr‐His‐NHNH‐Fmoc was synthesized to form molecularly imprinted polymers (MIPs) for targeted CBCPH detection. First, oxytocin, a cardiovascular hormone and a CBCPH, was used as a template to fabricate MIPs on quartz crystal microbalance (QCM) chips. On the other hand, fabricated selected ANP segment or BNP segment as an epitope is able to construct epitope‐mediated MIPs (EMIPs) for ANP or BNP. The developed oxytocin or ANP sensor reached a detection limitation of 0.1nM with the dissociation constants being 30pM for oxytocin and 20pM for ANP. Moreover, BNP sensor achieved a detection limitation of 2.89pM with an even lower Kd value as 2pM. Compared with the performance of EMIPs, the imprinted films showed high affinity and selectivity in special binding to CBCPHs. The developed MIPs‐QCM biosensors thus provide an improved sensing platform using an amphiphilic monomer and may be useful for applications toward cyclotides, cystine knot motifs, or insulin‐like peptides.  相似文献   

11.
Monolithic molecularly imprinted columns were designed and prepared by anin-situ thermal-initiated copolymerization technique for rapid separation of tryptophan andN-CBZ-phenylalanine enantiomers. The influence of polymerization conditions and separation conditions on the specific molecular recognition ability for enantiomers and diastereomers was investigated. The specious molecular recognition was found to be dependent on the stereo structures and the arrangement of functional groups of the imprinted molecule and the cavities in the molecularly imprinted polymer (MIP). Moreover, hydrogen bonding interactions and hydrophobic interactions played an important role in the retention and separation. Compared to conventional MIP preparation procedures, the present method is very simple, and its macroporous structure has excellent separation properties.  相似文献   

12.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Introduction – Plant extracts are usually complex mixtures of various polarity compounds and their study often includes a purification step, such as solid‐phase extraction (SPE), to isolate interest compounds prior analytical investigations. Molecularly imprinted polymers (MIPs) are a new promising type of SPE material which offer tailor‐made selectivity for the extraction of trace active components in complex matrices. Numerous specific cavities that are sterically and chemically complementary of the target molecules, are formed in imprinted polymers. A molecularly imprinted polymer (MIP) was synthesised in order to trap a specific class of triterpene, including betulin and betulinic acid from a methanolic extract of plane bark. Methodology – Imprinted polymers were synthesised by thermal polymerisation of betulin as template, methacrylic acid (MAA) or acrylamide (AA) as functional monomer, ethylene glycol dimethacrylate as crosslinking agent and chloroform as porogen. Afterwards, MAA‐ and AA‐MIPs were compared with their non‐imprinted polymers (NIPs) in order to assess the selectivity vs betulin and its derivatives. Recovered triterpenes were analysed by HPLC during MIP‐SPE protocol. Results – After SPE optimisation, the MAA‐imprinted polymer exhibited highest selectivity and recovery (better than 70%) for betulin and best affinity for its structural analogues. Thus, a selective washing step (chloroform, acetonitrile) removed unwanted matrix compounds (fatty acids) from the SPE cartridge. The elution solvent was methanol. Finally, the MAA‐MIP was applied to fractionate a plane bark methanolic extract containing betulin and betulinic acid. Conclusion – This study demonstrated the possibility of direct extraction of betulin and its structural analogues from plant extracts by MIP technology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study aimed to prepare a novel quartz crystal microbalance (QCM) sensor for the detection of pirimicarb. Pirimicarb‐imprinted poly (ethylene glycol dimethacrylate‐N‐metacryloyl‐(l )‐tryptophan methyl ester) [p (EGDMA‐MATrp)] nanofilm (MIP) on the gold surface of a QCM chip was synthesized using the molecular imprinting technique. A nonimprinted p (EGDMA‐MATrp) nanofilm (NIP) was also synthesized using the same experimental technique. The MIP and NIP nanofilms were characterized via Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy, contact angle, atomic force microscopy, and an ellipsometer. A competitive adsorption experiment on the sensor was performed to display the selectivity of the nanofilm. An analysis of the QCM sensor showed that the MIP nanofilm exhibited high sensitivity and selectivity for pirimicarb determination. A liquid chromatography‐tandem mass spectrometry method was prepared and validated to determine the accuracy and precision of the QCM sensor. The accuracy and precision of both methods were determined by a comparison of six replicates at three different concentrations to tomato samples extracted by using a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. The limit of detection of the QCM sensor was found to be 0.028 nM. In conclusion, the QCM sensor showed good accuracy, with recovery percentages between 91 and 94%. Also, the pirimicarb‐imprinted QCM sensor exhibited a fast response time, reusability, high selectivity and sensitivity, and a low limit of detection. Therefore, it offers a serious alternative to the traditional analytical methods for pesticide detection in both natural sources and aqueous solutions.  相似文献   

15.
In this study, a molecularly imprinted polymer (MIP) was prepared to selectively template the [2+2] photodimerization of trans-1,2-bis(4-pyridyl)ethylene. First, an MIP selective for rctt-tetrakis(4-pyridyl)cyclobutane, which is the [2+2] photodimerization product of trans-1,2-bis(4-pyridyl)ethylene, was prepared from methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA). The non-covalent MIP showed enhanced affinity for both the templating agent, rctt-tetrakis(4-pyridyl)cyclobutane, and the alkene precursor, trans-1,2-bis(4-pyridyl)ethylene. The solid-state photodimerization reaction proceeded in significantly higher yields in the presence of the MIP. Control reactions carried out in the absence of polymer gave no product, and reactions carried out in the presence of a non-imprinted polymer and an MIP imprinted with a different template, 3-hydroxymethylpyridine, gave much lower yields of the cyclobutane photodimerization product. The outcome of the MIP-templated photodimerization reaction was strongly influenced by the binding site heterogeneity of the non-covalently imprinted polymers. For example, higher yields were observed with decreasing olefin loadings levels on the MIPs. This binding site heterogeneity was characterized via application of the Freundlich binding model to the experimentally measured binding isotherms. These confirmed that the non-covalent MIPs had very few high-affinity binding sites, which greatly limits the capacity and ultimately the utility of these materials as templates in synthetic organic applications.  相似文献   

16.
In this study, a novel method is described for the determination of tramadol in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and tramadol as template molecule. The novel imprinted polymer was used as a solid-phase extraction (SPE) sorbent for the extraction of tramadol from human plasma and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for the MIP cartridges were studied. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. The limit of detection (LOD) and limit of quantification (LOQ) for tramadol in urine samples were 1.2 and 3.5 μg L−1, respectively. These limits for tramadol in plasma samples were 3.0 and 8.5 μg L−1, respectively. The recoveries for plasma and urine samples were higher than 91%.  相似文献   

17.
Liu Z  Jia F  Wang W  Wang C  Liu Y 《Luminescence》2012,27(4):297-301
A novel method was developed using molecular imprinting technology (MIT) coupled with flow‐injection chemiluminescence (FI‐CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross‐linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N‐bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09–2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Molecular imprinted polymers (MIP) as a recognition element for sensors are increasingly of interest and MIP-quartz crystal microbalance (QCM) have started to appear in the literature. In this study, we have combined quartz crystal microbalance with MIP to prepare a sensor using the ability of glucose to chelate of copper (II) ion of methacrylamidohistidine (MAH) monomer to create ligand exchange (LE) assembled monolayer which is suitable for glucose determination. The study includes the measurement of binding interaction of molecularly imprinted QCM sensor via ligand interaction, investigation of the pH effect on frequency shift and recognition selectivity studies of glucose-imprinted polymer with respect to methyl-alpha-d-glucopyranoside and sucrose. Bmax (number of binding sites) and K(D) (dissociation constant of the metal-chelate copolymer) were also calculated using Scathard plot and the detection limit was found as 0.07 mM. MIP showed higher glucose-binding affinity than a well-known glucose binding protein, conconavalin A.  相似文献   

19.
As the daminozide (DM) and its metabolite have been identified to be potentially carcinogenic, rapid detection method for them is necessary for food safety. A type of piezoelectric crystal sensor has been prepared by using a molecularly imprinted polymer (MIP) as recognition element. The molecularly imprinted polymer was prepared by hot-induced precipitation polymerization, and then the polymer particles were fixed on the surface of the electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to evaluate the obtained imprinted polymer particles and the MIP sensitive film coated on the electrode. The results showed that a typical time-response curve of the MIP-coated crystal to the DM solution had been given, frequency shifts versus logarithm changes of DM showed good linear correlation within the concentration range of 1.0x10(-9) to 10(-6) mg/mL (y=11.38 lg x+115.45, r=0.9872) and 1.0x10(-6) to 10(-1) mg/mL (y=25.22lgx+209.44, r=0.9938), respectively. The detection limit was 5.0x10(-8) mg/mL (S/N=3), which is lower than that of conventional methods. Further, computer simulation technology was employed to investigate the interaction between methacrylic acid and DM for elucidating the recognition mechanism. The influencing factor pH has also been investigated. The injection experiments of DM structurally related compounds indicated that the obtained sensor has high sensitivity, excellent selectivity, low cost, good reproducibility, and reusable property by combining with piezoelectric crystal and molecularly imprinted polymer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号