首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the eco‐friendly, low‐cost and room‐temperature synthesis of gold nanoparticles from Musa balbisiana leaf extract, which acts as both reducing and stabilizing agent, and characterized by ultraviolet?visible (UV–vis) light spectroscopy, fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FE‐SEM), analytical transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDAX) and dynamic light scattering (DLS) instruments. These nanoparticles showed an average diameter of 33.83 ± 3.39 nm, which was confirmed from the size distribution histogram. The bactericidal activity of these nanoparticles was confirmed using bacteria Escherichia coli and Staphylococcus aureus at 1 and 2 nM minimum inhibitory concentrations, respectively. The interaction between nanoparticles and human serum albumin (HSA) was investigated, as this plays significant roles in biological systems. The nature of interaction, binding parameters and structural variation of HSA in the presence of these nanoparticles have been evaluated using several useful spectroscopic approaches such as UV–vis, FTIR, time‐resolved and steady‐state fluorescence, and circular dichroism in addition to the measurement of zeta potential. This interaction study revealed that static quenching occurs in this process with minimal alteration in the secondary structure, but the native structure of HSA remained unaltered. The binding constant and thermodynamic parameters of this interaction process were also evaluated.  相似文献   

2.
Anthocyanin is one of the flavonoid phytopigments with specific health benefits. The interaction between delphinidin‐3‐O‐glucoside (D3G) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling. D3G effectively quenched the intrinsic fluorescence of BSA via static quenching. The number of binding sites and binding constant Ka were determined, and the hydrogen bonds and van der Waals forces played major roles in stabilizing the D3G–BSA complex. The distance r between donor and acceptor was obtained as 2.81 nm according to Förster's theory. In addition, the effects of pH and metal ions on the binding constants were discussed. The results studied by synchronous fluorescence, three‐dimensional fluorescence and circular dichroism experiments indicated that the secondary structures of the protein has been changed by the addition of D3G and the α‐helix content of BSA decreased (from 56.1% to 52.4%). Furthermore, the study of site marker competitive experiments and molecular modeling indicated that D3G could bind to site I of BSA, which was in the large hydrophobic cavity of subdomain IIA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

4.
Anthocyanin is one of the flavonoid phytopigments that shows strong antioxidant activity. The cyanidin‐3‐O‐glucoside (C3G) is one of the principal types of anthocyanins. To understand the interaction between C3G and bovine serum albumin (BSA), fluorescence spectroscopy, ultraviolet–visible absorption, Fourier transform infrared spectroscopy, circular dichroism and molecular modeling techniques were used. Binding constant (Ka) and the number of binding sites (n) were calculated. The quenching mechanism of fluorescence of BSA by C3G was discussed. The results studied by Fourier transform infrared spectroscopy and circular dichroism experiments indicate that the secondary structures of the protein have been changed by the interaction of C3G with BSA. The result of molecular modeling confirmed that the C3G bound to the site I (sub‐domain IIA) of BSA, and that the hydroxyl groups in the B ring of C3G took part in the binding with BSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet–visible spectroscopy, fluorescence spectroscopy and confirmed by three‐dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β‐cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern–Volmer equation. The thermodynamic parameters ?Ho, ?Go, ?So at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non‐radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction of four benzothiazole tethered triazole analogues (MS43, MS70, MS71, and MS78) with human serum albumin (HSA) was investigated using various spectroscopic techniques (ultraviolet–visible (UV–vis) light absorption, fluorescence, circular dichroism (CD), molecular docking and density functional theory (DFT) studies). Fluorescence quenching constants (~1012) revealed a static mode of quenching and binding constants (Kb ~104) indicating the strong affinity of these analogues for HSA. Further alteration in the secondary structure of HSA in the presence of these analogues was also confirmed by far UV–CD spectroscopy. The intensity loss in CD studied at 222 nm indicated an increase in random coil/β‐sheet conformations in the protein. Binding energy values (MS71 (?9.3 kcal mol?1), MS78 (?8.02 kcal mol?1), MS70 (?7.16 kcal mol?1) and MS43 (?6.81 kcal mol?1)) obtained from molecular docking revealed binding of these analogues with HSA. Molecular docking and DFT studies validated the experimental results, as these four analogues bind with HSA at site II through hydrogen bonding and hydrophobic interactions.  相似文献   

7.
A simple and eco‐friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet‐visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, and X‐ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The interaction of paclitaxel with human serum albumin (HSA) was studied using fluorescence, resonance light scattering, ultraviolet‐visible, circular dichroism and Fourier transform infrared spectroscopy at pH 7.4. Fluorescence data revealed that the fluorescence quenching of HSA by paclitaxel was a static quenching procedure. Time‐resolved fluorescence data also confirmed the quenching mode, which present a constant decay time of about 5 ns. The binding sites were approximately 1 and the binding constant suggested a weak association (324/M at 298 K), which is helpful for the release of the drug to targeted organs. The thermodynamic parameters, ΔG, ΔH° and ΔS° were calculated as – 1.06 × 104 J/mol, 361 J/mol per K and 9.7 × 104 J/mol respectively at 298 K, suggesting that binding was spontaneous and was driven mainly by hydrophobic interactions. The binding distance between HSA and paclitaxel was determined to be 2.23 nm based on the Förster theory. Analysis of circular dichroism, ultraviolet‐visible, three‐dimensional fluorescence, Fourier transform infrared and resonance light scattering spectra demonstrated that HSA conformation was slightly altered in the presence of paclitaxel and dimension of the individual HSA molecules were larger after interacting with paclitaxel. These results were confirmed by a molecular docking study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Rhus javanica (Anacardiaceae) containing abundant glucopyranosidal constituents, is traditionally used to treat gastric and duodenal ulcer, dysentery, and diarrhea. Rumex hastatus (Polygonaceae) widely distributed in Pakistan, has traditional importance in treating wound healing, jaundice, rheumatism, and skin diseases. Callistemon viminalis (Myrtaceae), a rich source of essential oils, saponins, triterpenoids, phloroglucinols, and flavonoids is used in industries, perfumes, nutrition, and cosmetics. Taking the importance of the subject plants, this study is designed to synthesize silver nanoparticles via aqueous extracts of R. javanica (RJAgNPs), R. hastatus (RHAgNPs), and C. viminalis (CVAgNPs). Synthesis, surface, and sizes of silver nanoparticles (AgNPs) were confirmed using spectroscopic techniques including ultraviolet–visible (UV–Vis), Fourier transform-infrared (FT-IR), and scanning electron microscopy (SEM). AgNPs were produced in ratios 1:15, 1:16, and 1:9 and inferred via appearance of a sharp surface plasmon resonance (SPR) absorption peak (400–435 nm), which represented well-defined, stable, and spherical AgNPs. From SEM analysis, the sizes of RJAgNPs, RHAgNPs, and CVAgNPs were found to be 67 nm, 61 nm, and 55 nm, respectively. The synthesized AgNPs exhibited potential free radical scavenging, antibacterial, and catalytic properties in degradation of dyes including Congo red, methylene blue, methyl orange, rhodamine B, ortho and para-nitrophenols, and several food colours. Hence, the subject AgNPs in the current study might display promising role in drug development and remediation of environmental/industrial effluents.  相似文献   

10.
The mechanism of the interaction between bovine serum albumin (BSA) and desvenlafaxine was studied using fluorescence, ultraviolet absorption, 3‐dimensional fluorescence spectroscopy, circular dichroism, synchronous fluorescence spectroscopy, cyclic voltametry, differential scanning calorimetry, and attenuated total reflection–Fourier transform infrared spectroscopic techniques under physiological condition at pH 7.4. Stern‐Volmer calculations authenticate the fluorescence of BSA that was quenched by desvenlafaxine in a collision quenching mode. The fluorescence quenching method was used to evaluate number of binding sites “n” and binding constant K A that were measured, and various thermodynamic parameters were evaluated at different temperatures by using the van't Hoff equation and differential scanning calorimetry technique, which indicated a spontaneous and hydrophobic interaction between BSA and desvenlafaxine. According to the Förster theory we calculate the distance between the donor, BSA and acceptor, desvenlafaxine molecules. Furthermore, circular dichroism and attenuated total reflection–Fourier transform infrared spectroscopy indicate nominal changes in the secondary structure of the protein.  相似文献   

11.
This study investigates the green synthesis of AgNPs from 1 mM aqueous AgNO3 using 10% leaf extract of Alstonia scholaris (Chhatim) for its wide antibacterial and medicinal properties. The synthesized AgNPs were duly characterized by UV–vis (UV–vis) spectrophotometry, dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive analysis of X-rays spectroscopy, and fourier transform infrared spectrophotometry. Their antibacterial property was tested against Escherichia coli (ATCC 25922), and minimum inhibitory concentrations of 0.08 nM of AgNPs were obtained, which suggests improved therapeutic efficacy. We report the interaction of human serum albumin (HSA) with this nanoparticle, and this interaction was studied by UV–vis, fluorescence, and circular dichroism spectroscopies and zeta potential measurement at room temperature. It was found that the AgNPs form a complex with HSA, which may cause the slightest change in the conformation of HSA. The calculated values of Stern-Volmer quenching constant, binding constant, and binding distance were 1.82 × 107 M−1, 1.58 × 107 M−1, and 3.68 nm, respectively. Therefore, in future, the present study may provide useful information to design a better antibacterial compound by using green synthesized nanoparticles with fewer side effects.  相似文献   

12.
Nowadays, understanding of interface between protein and drugs has become an active research area of interest. These types of interactions provide structural guidelines in drug design with greater clinical efficacy. Thus, structural changes in catalase induced by clofazimine were monitored by various biophysical techniques including UV‐visible spectrometer, fluorescence spectroscopy, circular dichroism, and dynamic light scattering techniques. Increase in absorption spectra (UV‐visible spectrum) confers the complex formation between drug and protein. Fluorescence quenching with a binding constants of 2.47 × 104 M−1 revealed that clofazimine binds with protein. Using fluorescence resonance energy transfer, the distance (r ) between the protein (donor) and drug (acceptor) was found to be 2.89 nm. Negative Gibbs free energy change (ΔG °) revealed that binding process is spontaneous. In addition, an increase in α‐helicity was observed by far‐UV circular dichroism spectra by adding clofazimine to protein. Dynamic light scattering results indicate that topology of bovine liver catalase was slightly altered in the presence of clofazimine. Hydrophobic interactions are the main forces between clofazimine and catalase interaction as depicted by molecular docking studies. Apart from hydrophobic interactions, some hydrogen bonding was also observed during docking method. The results obtained from the present study may establish abundant in optimizing the properties of ligand‐protein mixtures relevant for numerous formulations.  相似文献   

13.
The present work aimed to synthesis silver nanoparticles (AgNPs) using biological waste products Citrus limon peels, its characterization, antimicrobial activities and the cytotoxic effect of the synthesized green AgNPs. Characterization of the prepared AgNPs showed the formation of spherical, and few agglomerated AgNPs forms as measured by UV–visible spectrophotometer. The average size of the prepared AgNPs was 59.74 nm as measured by DLS technique. The spectrum of the synthesized AgNPs was observed at 3 KeV using the EDX. On the other hand, FTIR analysis of the green synthesized AgNPs showed the presence of alcohols, phenolics, mono-substituted alkynes, aliphatic primary amines, sodium salt, amino acid, or SiOH alcohol groups. The antimicrobial studies of the formed AgNPs showed positive activity against most of the studied human pathogenic bacteria with varying degrees. Finally, the evaluation of the cytotoxic effect of the green synthesized AgNPs were done using two types of cell lines, human breast cancer cell line (MCF-7) and human colon carcinoma cell line (HCT-116). The results revealed the concentration has a direct correlation with cell viability. The 50% inhibitory concentration (IC50) of MCF-7 cell line was in of 23.5 ± 0.97 µL/100 µL, whereas the HCT-116 cell line was in 37.48 ± 5.93 µL/100 µL.  相似文献   

14.
In this article, a facile and convenient synthesis of thiazol‐2(3H)‐ylidine derivatives of fatty acid ( 3a – c ) is described. The binding of N′‐(4,5‐dimethyl‐3‐penylthiazol‐2(3H)‐ylidine)octadec‐9‐enehydrazide ( 3a ) with human serum albumin (HSA) is explored using various spectral methods and molecular docking. Fluorescence quenching results show that 3a induces conformational changes in HSA and the polarity around the tryptophan residues is increased. Stern–Volmer quenching plots at different temperatures (298, 305 and 312 K) show that the fluorescence quenching mechanism is static quenching. Synchronous fluorescence, 3D fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy are used to determine the structural change in HSA on interaction with 3a . Förster resonance energy transfer analysis shows that the binding distance (r0 = 2.78 nm) between HSA (Trp214) and 3a is within the of range 2–8 nm for quenching to occur. The molecular docking study also confirms that 3a is located in subdomain IIA (site I) of HSA and is stabilized by hydrogen bonding and hydrophobic forces.  相似文献   

15.
The binding of malathion to human serum albumin (HSA) in the presence of silver nanoparticles (AgNPs) was investigated for the first time by multiple spectroscopic methods such as fluorescence quenching, fluorescence resonance energy transfer (FRET), circular dichroism, red-edge excitation shift (REES), synchronous fluorescence and three dimensional fluorescence spectroscopy under physiological conditions .The results indicated that binding of malathion to HSA induced fluorescence quenching through static mechanism. The number of binding sites was calculated by double logarithmic equation. Changes in the micro-environment of the fluorophore residues were also probed by synchronous fluorescence spectroscopy and REES. Changes of secondary structure of HSA in HSA–malathion complex was verified by circular dichroism approach in the presence of AgNPs that showed the electrostatic interaction changes in the protein structure. The binding average distance (r) between the donor (HSA) and the acceptor (malathion) was measured and found to be 1.63?nm according to the Forster’s theory of non-radiation energy transfer which was <7?nm confirmed the existence of static quenching in the presence of AgNPs. The conformational changes of HSA by three-dimensional fluorescence spectroscopy were studied. By comparing the resonance light scattering in the binary and ternary systems, we could estimate the effect of AgNPs on the precipitation of the malathion on the HSA. Generally we have discussed the toxicity reduction effect of malathion in food industrial by the results of spectroscopy techniques.  相似文献   

16.
17.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The biological method for the synthesis of silver nanoparticles (AgNPs) using Annona squamosa leaf extract and its cytotoxicity against MCF-7 cells are reported. The synthesized AgNPs using A. squamosa leaf extract was determined by UV–visible spectroscopy and it was further characterized by FT-IR, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Zeta potential and energy dispersive spectrometric (EDS) analysis. The UV–visible spectrum showed an absorption peak at 444 nm which reflects surface plasmon resonance (SPR) of AgNPs. TEM photography showed biosynthesized AgNPs were predominantly spherical in shape with an average size ranging from 20 to 100 nm. The Zeta potential value of ?37 mV revealed the stability of biosynthesized AgNPs. Furthermore, the green synthesized AgNPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and normal breast epithelial cells (HBL-100) and the inhibitory concentration (IC50) were found to be 50 μg/mL, 30 μg/mL, and 80 μg/mL, 60 μg/ml for AgNPs against MCF-7 and normal HBL-100 cells at 24 h and 48 h incubation respectively. An induction of apoptosis was evidenced by (AO/EtBr) and DAPI staining. Application of such eco-friendly nanoparticles makes this method potentially exciting for the large scale synthesis of nanoparticles.  相似文献   

19.
A new efficient phosphor, A9B(VO4)7 [A = Ca, Sr, Ba and B = La, Gd] has been synthesized by the solid‐state method at high temperature. X‐ray diffraction analysis confirmed the formation of the compound. Photoluminescence excitation measurements show that the phosphor can be efficiently excited by near‐ultraviolet light from 300 nm to 400 nm to realize emission covering the 397–647 nm region of visible spectrum. Therefore, newly synthesized novel phosphor may be useful as green‐emitting phosphor in solid‐state lighting. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A novel green approach for the synthesis and stabilization of silver nanoparticles (AgNPs) using water extract of Terminalia chebula (T. chebula) fruit under ambient conditions is reported in this article. The instant formation of AgNPs was analyzed by visual observation and UV–visible spectrophotometer. Further the effect of pH on the formation of AgNPs was also studied. The synthesized AgNPs were characterized by FT-IR, XRD, HR-TEM with EDS and DLS with zeta potential. Appearance of brownish yellow color confirmed the formation of AgNPs. In the neutral pH, the stability of AgNPs was found to be high. The stability of AgNPs is due to the high negative values of zeta potential and capping of phytoconstituents present in the T. chebula fruit extract which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized AgNPs showed their crystalline structure, with face centered cubic geometry oriented in (1 1 1) plane. HR-TEM and DLS studies revealed that the diameter of stable AgNPs was approximately 25 nm. Moreover the catalytic activity of synthesized AgNPs in the reduction of methylene blue was studied by UV–visible spectrophotometer. The synthesized AgNPs are observed to have a good catalytic activity on the reduction of methylene blue by T. chebula which is confirmed by the decrease in absorbance maximum values of methylene blue with respect to time using UV–visible spectrophotometer and is attributed to the electron relay effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号