首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organization of the vertebrate inner ear is mainly dependent on localized signals from surrounding tissues. Previous studies demonstrated that sonic hedgehog (Shh) secreted from the floor plate and notochord is required for specification of ventral (auditory) and dorsal (vestibular) inner ear structures, yet it was not clear how this signaling activity is propagated. To elucidate the molecular mechanisms by which Shh regulates inner ear development, we examined embryos with various combinations of mutant alleles for Shh, Gli2 and Gli3. Our study shows that Gli3 repressor (R) is required for patterning dorsal inner ear structures, whereas Gli activator (A) proteins are essential for ventral inner ear structures. A proper balance of Gli3R and Gli2/3A is required along the length of the dorsoventral axis of the inner ear to mediate graded levels of Shh signaling, emanating from ventral midline tissues. Formation of the ventral-most otic region, the distal cochlear duct, requires robust Gli2/3A function. By contrast, the formation of the proximal cochlear duct and saccule, which requires less Shh signaling, is achieved by antagonizing Gli3R. The dorsal vestibular region requires the least amount of Shh signaling in order to generate the correct dose of Gli3R required for the development of this otic region. Taken together, our data suggest that reciprocal gradients of GliA and GliR mediate the responses to Shh signaling along the dorsoventral axis of the inner ear.  相似文献   

2.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   

3.
4.
The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development - ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells - are orchestrated by gradients of signaling molecules.  相似文献   

5.

Background  

The robust expression of BMP4 in the incipient sensory organs of the inner ear suggests possible roles for this signaling protein during induction and development of auditory and vestibular sensory epithelia. Homozygous BMP4-/- animals die before the inner ear's sensory organs develop, which precludes determining the role of BMP4 in these organs with simple gene knockout experiments.  相似文献   

6.
The proliferation, differentiation, and fusion of a small number of myogenic precursor cells must be precisely regulated during development to ensure the proper size, organization, and function of the limb musculature. We have examined the role of Sonic hedgehog (Shh) in these processes by both augmentation and inhibition of the Shh-mediated signaling pathway. Our data show that Shh regulates muscle development by repressing the terminal differentiation of early myogenic precursor cells and does not function as a myoblast mitogen. Shh function in hypaxial muscle appears to be spatially restricted to the early myoblast population within the ventral muscles of the posterior region of the limb. Furthermore, Shh appears to act as a permissive, rather than an inductive, signal for slow MyHC expression in myoblasts. Our data thus provide the foundation for a new hypothesis for Shh function in hypaxial skeletal muscle development.  相似文献   

7.
Fgf-8 encodes a secreted signaling molecule mediating key roles in embryonic patterning. This study analyzes the expression pattern, regulation, and function of this growth factor in the paraxial mesoderm of the avian embryo. In the mature somite, expression of Fgf-8 is restricted to a subpopulation of myotome cells, comprising most, but not all, epaxial and hypaxial muscle precursors. Following ablation of the notochord and floor plate, Fgf-8 expression is not activated in the somites, in either the epaxial or the hypaxial domain, while ablation of the dorsal neural tube does not affect Fgf-8 expression in paraxial mesoderm. Contrary to the view that hypaxial muscle precursors are independent of regulatory influences from axial structures, these findings provide the first evidence for a regulatory influence of ventral, but not dorsal axial structures on the hypaxial muscle domain. Sonic hedgehog can substitute for the ventral neural tube and notochord in the initiation of Fgf-8 expression in the myotome. It is also shown that Fgf-8 protein leads to an increase in sclerotomal cell proliferation and enhances rib cartilage development in mature somites, whereas inhibition of Fgf signaling by SU 5402 causes deletions in developing ribs. These observations demonstrate: (1) a regulatory influence of the ventral axial organs on the hypaxial muscle compartment; (2) regulation of epaxial and hypaxial expression of Fgf-8 by Sonic hedgehog; and (3) independent regulation of Fgf-8 and MyoD in the hypaxial myotome by ventral axial organs. It is postulated that the notochord and ventral neural tube influence hypaxial expression of Fgf-8 in the myotome and that, in turn, Fgf-8 has a functional role in rib formation.  相似文献   

8.
9.
Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb muscle defect became apparent relatively late and initial stages of hypaxial muscle development were unaffected or only slightly delayed. Micromass cultures and cultures of tissue fragments derived from limbs under different conditions with or without the overlaying ectoderm indicated that Shh is required for the maintenance of the expression of myogenic regulatory factors (MRFs) and, consecutively, for the formation of differentiated limb muscle myotubes. We propose that Shh acts as a survival and proliferation factor for myogenic precursor cells during hypaxial muscle development. Detection of a reduced but significant level of Myf5 expression in the epaxial compartment of somites of Shh homozygous mutant embryos at E9.5 indicated that Shh might be dispensable for the initiation of myogenesis both in hypaxial and epaxial muscles. Our data suggest that Shh acts similarly in both somitic compartments as a survival and proliferation factor and not as a primary inducer of myogenesis.  相似文献   

10.
Hedgehog (Hh) signaling is proposed to have different roles on differentiation of hypaxial myoblasts of amniotes. Within the somitic environment, Hh signals restrict hypaxial development and promote epaxial muscle formation. On the other hand, in the limb bud, Hh signaling represses hypaxial myoblast differentiation. This poses the question of whether differences in response to Hh signaling are due to variations in local environment or are intrinsic differences between pre- and post-migratory hypaxial myoblasts. We have approached this question by examining the role of Hh signaling on myoblast development in Xenopus laevis, which, due to its unique mode of hypaxial muscle development, allows us to examine myoblast development in vivo in the absence of the limb environment. Cyclopamine and sonic hedgehog (shh) mRNA overexpression were used to inhibit or activate the Hh pathway, respectively. We find that hypaxial myoblasts respond similarly to Hh manipulations regardless of their location, and that this response is the same for epaxial myoblasts. Overexpression of shh mRNA causes a premature differentiation of the dermomyotome, subsequently inhibiting all further growth of the epaxial and hypaxial myotome. Cyclopamine treatment has the opposite effect, causing an increase in dermomyotome and a shift in myoblast fate from epaxial to hypaxial, eventually leading to an excess of hypaxial body wall muscle. Cyclopamine treatment before stage 20 can rescue the effects of shh overexpression, indicating that early Hh signaling plays an essential role in maintaining the balance between epaxial and hypaxial muscle mass. After stage 20, the premature differentiation of the dermomyotome caused by shh overexpression cannot be rescued by cyclopamine, and no further embryonic muscle growth occurs.  相似文献   

11.
The inner ear, the sensory organ responsible for hearing and balance, contains specialized sensory and non-sensory epithelia arranged in a highly complex three-dimensional structure. To achieve this level of complexity, a tight coordination between morphogenesis and cell fate specification is essential during otic development. Tissues surrounding the otic primordium and more particularly the adjacent segmented hindbrain, have been implicated in conferring signals required for inner ear development. In this review, we present the current view on the role of hindbrain signals in axial specification of the inner ear. The functional analysis of mutants of hindbrain segmentation genes, as well as the investigation of signaling pathways potentially involved, all point to an essential role of FGF, Wnt and Hh signaling in otic regionalization. However, these data provide conflicting evidence regarding the involvement of hindbrain signals in otic regionalization in fish and in amniotes. We discuss the possible origin of these differences.  相似文献   

12.
13.
In Drosophila, imaginal wing discs, Wg and Dpp, play important roles in the development of sensory organs. These secreted growth factors govern the positions of sensory bristles by regulating the expression of achaete-scute (ac-sc), genes affecting neuronal precursor cell identity. Earlier studies have shown that Dally, an integral membrane, heparan sulfate-modified proteoglycan, affects both Wg and Dpp signaling in a tissue-specific manner. Here, we show that dally is required for the development of specific chemosensory and mechanosensory organs in the wing and notum. dally enhancer trap is expressed at the anteroposterior and dorsoventral boundaries of the wing pouch, under the control of hh and wg, respectively. dally affects the specification of proneural clusters for dally-sensitive bristles and shows genetic interactions with either wg or dpp signaling components for distinct sensory bristles. These findings suggest that dally can differentially regulate Wg- or Dpp-directed patterning during sensory organ assembly. We have also determined that, for pSA, a bristle on the lateral notum, dally shows genetic interactions with iroquois complex (IRO-C), a gene complex affecting ac-sc expression. Consistent with this interaction, dally mutants show markedly reduced expression of an iro::lacZ reporter. These findings establish dally as an important regulator of sensory organ formation via Wg- and Dpp-mediated specification of proneural clusters.  相似文献   

14.
Rohr KB  Barth KA  Varga ZM  Wilson SW 《Neuron》2001,29(2):341-351
The Nodal and Hedgehog signaling pathways influence dorsoventral patterning at all axial levels of the CNS, but it remains largely unclear how these pathways interact to mediate patterning. Here we show that, in zebrafish, Nodal signaling is required for induction of the homeobox genes nk2.1a in the ventral diencephalon and nk2.1b in the ventral telencephalon. Hedgehog signaling is also required for telencephalic nk2.1b expression but may not be essential to establish diencephalic nk2.1a expression. Furthermore, Shh does not restore ventral diencephalic development in embryos lacking Nodal activity. In contrast, Shh does restore telencephalic nk2.1b expression in the absence of Nodal activity, suggesting that Hedgehog signaling acts downstream of Nodal activity to pattern the ventral telencephalon. Thus, the Nodal pathway regulates ventral forebrain patterning through both Hedgehog signaling-dependent and -independent mechanisms.  相似文献   

15.
During embryonic development, appropriate dorsoventral patterning of the trachea leads to the formation of periodic cartilage rings from the ventral mesenchyme and continuous smooth muscle from the dorsal mesenchyme. In this work, we have investigated the role of two crucial morphogens, fibroblast growth factor 10 and sonic hedgehog, in the formation of periodically alternating cartilaginous and non-cartilaginous domains in the ventral mesenchyme. Using a combination of gain- and loss-of-function approaches for FGF10 and SHH, we demonstrate that precise spatio-temporal patterns and appropriate levels of expression of these two signaling molecules in the ventral area are crucial between embryonic day 11.5 and 13.5 for the proper patterning of the cartilage rings. We conclude that the expression level of FGF10 in the mesenchyme has to be within a critical range to allow for periodic expression of Shh in the ventral epithelium, and consequently for the correct patterning of the cartilage rings. We propose that disturbed balances of Fgf10 and Shh may explain a subset of human tracheomalacia without tracheo-esophageal fistula or tracheal atresia.  相似文献   

16.
Second‐order sensory neurons are dependent on afferents from the sense organs during a critical period in development for their survival and differentiation. Past research has mostly focused on whole populations of neurons, hampering progress in understanding the mechanisms underlying these critical phases. To move toward a better understanding of the molecular and cellular basis of afferent‐dependent neuronal development, we developed a new model to study the effects of ear removal on a single identifiable cell in the hindbrain of a frog, the Mauthner cell. Ear extirpation at various stages of Xenopus laevis development defines a critical period of progressively‐reduced dependency of Mauthner cell survival/differentiation on the ear afferents. Furthermore, ear removal results in a progressively decreased reduction in the number of dendritic branches. Conversely, addition of an ear results in an increase in the number of dendritic branches. These results suggest that the duration of innervation and the number of inner ear afferents play a quantitative role in Mauthner cell survival/differentiation, including dendritic development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1339–1351, 2015  相似文献   

17.
Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.  相似文献   

18.
19.
The highly orchestrated processes that generate the vertebrate inner ear from the otic placode provide an excellent and circumscribed testing ground for fundamental cellular and molecular mechanisms of development. The recent pace of discovery in developmental auditory biology has been unusually rapid, with hundreds of papers published in the past 4 years. This review summarizes studies addressing several key issues that shape our current thinking about inner ear development, with particular emphasis on early patterning events, sensory hair cell specification and planar cell polarity.  相似文献   

20.
Axial patterning in the vertebrate inner ear has been studied for over eighty years, and recent work has made great progress towards an understanding of the molecular mechanisms responsible for establishing asymmetries about the otic axes. Tissues extrinsic to the ear provide sources of signalling molecules that are active early in development, at or before otic placode stages, while intrinsic factors interpret these signals to establish and maintain axial pattern. Key features of dorsoventral otic patterning in amniote embryos involve Wnt and Fgf signalling from the hindbrain and Hh signalling from midline tissues (notochord and floorplate). Mutual antagonism between these pathways and their downstream targets within the otic epithelium help to refine and maintain dorsoventral axial patterning in the ear. In the zebrafish ear, the same tissues and signals are implicated, but appear to play a role in anteroposterior, rather than dorsoventral, otic patterning. Despite this paradox, conservation of mechanisms may be higher than is at first apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号