首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Although intraindividual variability (IIV) in behavior is fundamental to ecological dynamics, the factors that contribute to the expression of IIV are poorly understood. Using an individual‐based model, this study examined the effects of stochasticity on the evolution of IIV represented by the residual variability of behavior. The model describes a population of prey with nonoverlapping generations, in which prey take refuge upon encountering a predator. The strategy of a prey is characterized by the mean and IIV (i.e., standard deviation) of hiding duration. Prey with no IIV will spend the same duration hiding in a refuge at each predator encounter, while prey with IIV will have variable hiding durations among encounters. For the sources of stochasticity, within‐generation stochasticity (represented by random predator encounters) and between‐generation stochasticity (represented by random resource availability) were considered. Analysis of the model indicates that individuals with high levels of IIV are maintained in a population in the presence of between‐generation stochasticity even though the optimal strategy in each generation is a strategy with no IIV, regardless of the presence or absence of within‐generation stochasticity. This contradictory pattern emerges because the mean behavioral trait and IIV do not independently influence fitness (e.g., the sign of the selection gradient with respect to IIV depends on the mean trait). Consequently, even when evolution eventually leads toward a strategy with no IIV (i.e., the optimal strategy), greater IIV may be transiently selected. Between‐generation stochasticity consistently imposes such transient selection and maintain high levels of IIV in a population.  相似文献   

2.
    
The effects of the expected predation rate on population dynamics have been studied intensively, but little is known about the effects of predation rate variability (i.e., predator individuals having variable foraging success) on population dynamics. In this study, variation in foraging success among predators was quantified by observing the predation of the wolf spider Pardosa pseudoannulata on the cricket Gryllus bimaculatus in the laboratory. A population model was then developed, and the effect of foraging variability on predator–prey dynamics was examined by incorporating levels of variation comparable to those quantified in the experiment. The variability in the foraging success among spiders was greater than would be expected by chance (i.e., the random allocation of prey to predators). The foraging variation was density‐dependent; it became higher as the predator density increased. A population model that incorporates foraging variation shows that the variation influences population dynamics by affecting the numerical response of predators. In particular, the variation induces negative density‐dependent effects among predators and stabilizes predator–prey dynamics.  相似文献   

3.
    
In an era of global environmental change, understanding how disturbance affects the dynamics of ecological communities is crucial. However, few studies have theoretically explored the potential influence of disturbance including both intensity and frequency on compositional change over time in communities with stage structure. A spatially explicit, individual‐based model was constructed incorporating the various demographic responses to disturbance of plants at two different growth stages: seedlings and adults. In the model, we assumed that individuals within each stage were demographically equivalent (neutral) but differed between stages. We simulated a common phenomenon that seedlings suffered more from disturbance such as grazing and fire than adults. We showed how stage‐structured communities of seedlings and adults responded to disturbance with various levels of disturbance frequency and intensity. In “undisturbed” simulations, the relationship between average species abundance (defined here as the total number of individuals divided by species richness) and community composition turnover (measured by the Bray–Curtis similarity index) was asymptotic. However, in strongly “disturbed” simulations with the between‐disturbance intervals greater than one, this relationship became unimodal. Stage‐dependent response to disturbance underlay the above discrepancy between undisturbed and disturbed communities.  相似文献   

4.
Individual‐based, spatially explicit models provide a mechanism to understand distributions of individuals on the landscape; however, few models have been coupled with population genetics. The primary benefits of such a combination is to assess performance of population‐genetic estimators in realistic situations. kernelpop represents a flexible framework to implement almost any arbitrary population‐genetic and demographic model in a spatially explicit context using a variety of dispersal kernels. Estimates of type I error associated with genome scans in metapopulations are provided as an illustration of this software's utility.  相似文献   

5.
    
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual‐based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual‐based phenology models. We demonstrate our approach using a temperature‐dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large‐scale simulations, such as studies of altered pest distributions under climate change.  相似文献   

6.
    
Climate change can influence interspecific interactions by differentially affecting species‐specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent‐based model of the predator–prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species‐specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice‐free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land‐based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator–prey interactions can have nonlinear responses to changes in climate and provides important predictions of ecological change in Arctic ecosystems.  相似文献   

7.
    
Colonization of novel hosts is thought to play an important role in parasite diversification, yet little consensus has been achieved about the macroevolutionary consequences of changes in host use. Here, we offer a mechanistic basis for the origins of parasite diversity by simulating lineages evolved in silico. We describe an individual‐based model in which (i) parasites undergo sexual reproduction limited by genetic proximity, (ii) hosts are uniformly distributed along a one‐dimensional resource gradient, and (iii) host use is determined by the interaction between the phenotype of the parasite and a heterogeneous fitness landscape. We found two main effects of host use on the evolution of a parasite lineage. First, the colonization of a novel host allowed parasites to explore new areas of the resource space, increasing phenotypic and genotypic variation. Second, hosts produced heterogeneity in the parasite fitness landscape, which led to reproductive isolation and therefore, speciation. As a validation of the model, we analyzed empirical data from Nymphalidae butterflies and their host plants. We then assessed the number of hosts used by parasite lineages and the diversity of resources they encompass. In both simulated and empirical systems, host diversity emerged as the main predictor of parasite species richness.  相似文献   

8.
Understanding patterns of connectivity among populations of marine organisms is essential for the development of realistic, spatially explicit models of population dynamics. Two approaches, empirical genetic patterns and oceanographic dispersal modelling, have been used to estimate levels of evolutionary connectivity among marine populations but rarely have their potentially complementary insights been combined. Here, a spatially realistic Lagrangian model of larval dispersal and a theoretical genetic model are integrated with the most extensive study of gene flow in a Caribbean marine organism. The 871 genets collected from 26 sites spread over the wider Caribbean subsampled 45.8% of the 1900 potential unique genets in the model. At a coarse scale, significant consensus between modelled estimates of genetic structure and empirical genetic data for populations of the reef-building coral Montastraea annularis is observed. However, modelled and empirical data differ in their estimates of connectivity among northern Mesoamerican reefs indicating that processes other than dispersal may dominate here. Further, the geographic location and porosity of the previously described east-west barrier to gene flow in the Caribbean is refined. A multi-prong approach, integrating genetic data and spatially realistic models of larval dispersal and genetic projection, provides complementary insights into the processes underpinning population connectivity in marine invertebrates on evolutionary timescales.  相似文献   

9.
    
Soil–atmosphere exchange significantly influences the global atmospheric abundances of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). These greenhouse gases (GHGs) have been extensively studied at the soil profile level and extrapolated to coarser scales (regional and global). However, finer scale studies of soil aggregation have not received much attention, even though elucidating the GHG activities at the full spectrum of scales rather than just coarse levels is essential for reducing the large uncertainties in the current atmospheric budgets of these gases. Through synthesizing relevant studies, we propose that aggregates, as relatively separate micro‐environments embedded in a complex soil matrix, can be viewed as biogeochemical reactors of GHGs. Aggregate reactivity is determined by both aggregate size (which determines the reactor size) and the bulk soil environment including both biotic and abiotic factors (which further influence the reaction conditions). With a systematic, dynamic view of the soil system, implications of aggregate reactors for soil–atmosphere GHG exchange are determined by both an individual reactor's reactivity and dynamics in aggregate size distributions. Emerging evidence supports the contention that aggregate reactors significantly influence soil–atmosphere GHG exchange and may have global implications for carbon and nitrogen cycling. In the context of increasingly frequent and severe disturbances, we advocate more analyses of GHG activities at the aggregate scale. To complement data on aggregate reactors, we suggest developing bottom‐up aggregate‐based models (ABMs) that apply a trait‐based approach and incorporate soil system heterogeneity.  相似文献   

10.
    
In proovigenic parasitoids such as Leptopilina boulardi, the female emerges with a limited egg load and no further eggs are produced during its adult life. A female thus runs the risk of exhausting this limited supply of eggs before the end of her life. Given that the production of an egg is costly, what is the evolutionarily stable egg load at emergence? This question has attracted a lot of attention in the last decade. Here, we analyze a model that allows us to track both the evolution and the population dynamics of a solitary, proovigenic parasitoid. First, we show how host–parasitoid dynamics feedbacks on the evolution of parasitoid egg load. Second, we use this model to consider the situation in which the parasitoid can be infected by a virus that manipulates the oviposition behavior of the females. In particular, we model the effect of the LbFV virus in L. boulardi, a virus that is known to enhance its horizontal transmission by increasing superparasitism (i.e., the laying of eggs in a host already parasitized). Specifically, we model (1) the effect of the virus on parasitoid egg load strategies , and (2) the evolution of egg load manipulation by the virus. This analysis yields two alternative, yet not mutually exclusive, adaptive explanations for the observation that females infected by the virus harbor higher egg loads than uninfected females. Infected females could either respond plastically to the infection status, or be manipulated by the virus. Further experimental work is required to distinguish between these two hypotheses. In a broader context, we present a general theoretical framework that allows us to study the epidemiology, the evolution, the coevolution, and the evolution of manipulation of various reproductive strategies of parasitoids.  相似文献   

11.
12.
    
Sex‐biased dispersal is a much‐discussed feature in literature on dispersal. Diverse hypotheses have been proposed to explain the evolution of sex‐biased dispersal, a difference in dispersal rate or dispersal distance between males and females. An early hypothesis has indicated that it may rely on the difference in sex chromosomes between males and females. However, this proposal was quickly rejected without a real assessment. We propose a new perspective on this hypothesis by investigating the evolution of sex‐biased dispersal when dispersal genes are sex‐linked, that is when they are located on the sex chromosomes. We show that individuals of the heterogametic sex disperse relatively more than do individuals of the homogametic sex when dispersal genes are sex‐linked rather than autosomal. Although such a sex‐biased dispersal towards the heterogametic sex is always observed in monogamous species, the mating system and the location of dispersal genes interact to modulate sex‐biased dispersal in monandry and polyandry. In the context of the multicausality of dispersal, we suggest that sex‐linked dispersal genes can influence the evolution of sex‐biased dispersal.  相似文献   

13.
    
Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic‐resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic‐producing bacteria. Thus, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics. In particular, we suggest that nutrient‐poor environments including indoor environments, for example, clean rooms and intensive care units may serve as a reservoir and source for antibiotic‐producing as well as antibiotic‐resistant bacteria.  相似文献   

14.
    
To maximize the effectiveness of conservation interventions, it is crucial to have an understanding of how intraspecific variation determines the relative importance of potential limiting factors. For bird populations, limiting factors include nest‐site availability and foraging resources, with the former often addressed through the provision of artificial nestboxes. However, the effectiveness of artificial nestboxes depends on the relative importance of nest‐site vs. foraging resource limitations. Here, we investigate factors driving variation in breeding density, nestbox occupation and productivity in two contrasting study populations of the European Roller Coracias garrulus, an obligate cavity‐nesting insectivorous bird. Breeding density was more than four times higher at the French study site than at the Latvian site, and there was a positive correlation between breeding density (at the 1‐km2 scale) and nest‐site availability in France, whereas there was a positive correlation between breeding density and foraging resource availability in Latvia. Similarly, the probability of a nestbox being occupied increased with predicted foraging resource availability in Latvia but not in France. We detected no positive effect of foraging resource availability on productivity at either site, with most variation in breeding success driven by temporal effects: a seasonal decline in France and strong interannual fluctuations in Latvia. Our results indicate that the factors limiting local breeding density can vary across a species' range, resulting in different conservation priorities. Nestbox provisioning is a sufficient short‐term conservation solution at our French study site, where foraging resources are typically abundant, but in Latvia the restoration of foraging habitat may be more important.  相似文献   

15.
Kremer N  Huigens ME 《Molecular ecology》2011,20(17):3496-3498
A huge variety of Arthropod species is infected with endosymbiotic Wolbachia bacteria that manipulate their host’s reproduction to invade populations. In addition to vertical transmission from mother to offspring through the egg cytoplasm, it has been demonstrated through phylogenetic analyses and natural transfer experiments that horizontal transmission of Wolbachia (i.e. contagion) can occur between Arthropod hosts. More recently, factors influencing horizontal transfer have also been explored. While it is clear that horizontal transmission between species plays a major role in the evolutionary history of Wolbachia infections among insects, its role in the spread of a new infection through a host population, notably through within‐species transfers, remained unknown. In this issue of Molecular Ecology, Kraaijeveld et al. (2011) present the first evidence that horizontal transmission played a key role in the early spread of parthenogenesis‐inducing Wolbachia through the parasitoid wasp Leptopilina clavipes. To support their finding, the authors studied genetic variation in three types of markers, including host nuclear DNA, mitochondrial DNA and Wolbachia DNA. Specifically, they examined potential associations between their diversity patterns. No diversity was detected in Wolbachia genes, indicating that a single Wolbachia strain must have infected and spread through L. clavipes. In addition, a correlation between substantial variation in mitochondrial and nuclear genotypes suggested that horizontal transmission played an important role in the current clonal genetic variation in this wasp. Such horizontal transmission could be facilitated by a specific host ecology (e.g. parasitoid wasps sharing the same host resource) and potentially impact co‐evolution between host and symbiont.  相似文献   

16.
    
Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade‐offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual‐based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open‐source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.  相似文献   

17.
18.
    
A major challenge in studying social behaviour stems from the need to disentangle the behaviour of each individual from the resulting collective. One way to overcome this problem is to construct a model of the behaviour of an individual, and observe whether combining many such individuals leads to the predicted outcome. This can be achieved by using robots. In this review we discuss the strengths and weaknesses of such an approach for studies of social behaviour. We find that robots—whether studied in groups of simulated or physical robots, or used to infiltrate and manipulate groups of living organisms—have important advantages over conventional individual‐based models and have contributed greatly to the study of social behaviour. In particular, robots have increased our understanding of self‐organization and the evolution of cooperative behaviour and communication. However, the resulting findings have not had the desired impact on the biological community. We suggest reasons for why this may be the case, and how the benefits of using robots can be maximized in future research on social behaviour.  相似文献   

19.
研究了采自伊朗不同害虫的两种广赤眼蜂种群(T.evanescens A和T.evanescens B)的滞育,在米蛾卵内用恒温8℃,5℃或变温(11-23)℃-11℃容易地诱导T.evanescens A进入稳定的滞育,但却不能用同样的温度和寄主诱导T.evanescens B进入滞育.试验表明,母代的寄主和避免复寄生的能力可能在广赤眼蜂滞育诱导种内变异中起重要作用.  相似文献   

20.
Abstract The diapause of two populations of Trichogramma evanescens Westwood (T. evanescens A and T. evanescens B), collected from different Iranian insect pests, was studied. T. evunescens A in the eggs of Corcyra cephalonica was easily induced to stable diapause with constant 8°C, 15 % and fluctuating temperature (11–23) C -11C. T. evanescens B could not be induced to diapause with the same temperatural regime and host. The experiments showed that the host of maternal generations and the ability of avoiding super-parasitism may play an important role in intraspecific variation of T. evunescens in diapause induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号