首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), is a salmoniform fish that spawns once per year. Ripe females that had ovulated naturally, and those induced to ovulate using salmon gonadotropin-releasing hormone, were studied to determine whether follicles were forming at the time of spawning and to describe the process of folliculogenesis. After ovulation, the ovaries of postspawned rainbow trout were examined histologically, using the periodic acid-Schiff procedure, to stain basement membranes that subtend the germinal epithelium and to interpret and define the activity of the germinal epithelium. After spawning, the ovary contained a few ripe oocytes that did not ovulate, numerous primary growth oocytes including oocytes with cortical alveoli, and postovulatory follicles. The germinal epithelium was active in postspawned rainbow trout, as determined by the presence of numerous cell nests, composed of oogonia, mitotic oogonia, early diplotene oocytes, and prefollicle cells. Cell nests were separated from the stroma by a basement membrane continuous with that subtending the germinal epithelium. Furthermore, follicles containing primary growth oocytes were connected to the germinal epithelium; the basement membrane surrounding the follicle joined that of the germinal epithelium. After ovulation, the basement membrane of the postovulatory follicle was continuous with that of the germinal epithelium. We observed consistent separation of the follicle, composed of an oocyte and surrounding follicle cells, from the ovarian stroma by a basement membrane. The follicle is derived from the germinal epithelium. As with the germinal epithelium, follicle cells derived from it never contact those of the connective tissue stroma. As with epithelia, they are always separated from connective tissue by a basement membrane.  相似文献   

2.
Pelagic egg development in red drum, Sciaenops ocellatus, is described using tiered staging. Based on mitosis and meiosis, there are five periods: Mitosis of Oogonia, Active Meiosis I, Arrested Meiosis I, Active Meiosis II, and Arrested Meiosis II. The Periods are divided into six stages: Mitotic Division of Oogonia, Chromatin Nucleolus, Primary Growth, Secondary Growth, Oocyte Maturation and Ovulation. The Chromatin Nucleolus Stage is divided into four steps: Leptotene, Zygotene, Pachytene, and Early Diplotene. Oocytes in the last step possess one nucleolus, dispersed chromatin with forming lampbrush chromosomes and lack basophilic ooplasm. The Primary Growth Stage, characterized by basophilic ooplasm and absence of yolk in oocytes, is divided into five steps: One‐Nucleolus, Multiple Nucleoli, Perinucleolar, Oil Droplets, and Cortical Alveolar. During primary growth, the Balbiani body develops from nuage, enlarges and disperses throughout the ooplasm as both endoplasmic reticulum and Golgi develop within it. Secondary growth or vitellogenesis has three steps: Early Secondary Growth, Late Secondary Growth and Full‐Grown. The Oocyte Maturation Stage, including ooplasmic and germinal vesicle maturation, has four steps: Eccentric Germinal Vesicle, Germinal Vesicle Migration, Germinal Vesicle Breakdown and Resumption of Meiosis when complete yolk hydration occurs. The period is Arrested Meiosis II. When folliculogenesis is completed, the ovarian follicle, an oocyte and encompassing follicle cells, is surrounded by a basement membrane and developing theca, all forming a follicle complex. After ovulation, a newly defined postovulatory follicle complex remains attached to the germinal epithelium. It is composed of a basement membrane that separates the postovulatory follicle from the postovulatory theca. Arrested Meiosis I encompasses primary and secondary growth (vitellogenesis) and includes most of oocyte maturation until the resumption of meiosis (Active Meiosis II). The last stage, Ovulation, is the emergence of the oocyte from the follicle when it becomes an egg or ovum. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Distinct types of oogonia are found in the germinal epithelium that borders the ovarian lamellae of Pimelodus maculatus: A‐undifferentiated, A‐differentiated and B‐oogonia. This is similar to the situation observed for spermatogonia in the vertebrate testis. The single A‐undifferentiated oogonia divide by mitosis giving rise to A‐groups of single differentiated oogonia, each enclosed by epithelial cells that are prefollicle cells. Subsequently, the single A‐differentiated oogonia proliferate to generate B‐oogonia that are interconnected by cytoplasmic bridges, hence, forming germline cysts. The prefollicle cells associated with them also divide. Within the germline cysts, B‐oogonia enter meiosis becoming oocytes. Meiotic prophase and early folliculogenesis occur within the germline cysts. During folliculogenesis, prefollicle cells grow between the oocytes, encompassing and individualizing each of them. The intercellular bridges disappear, and the germline cysts are broken down. Next, a basement membrane begins to form around the nascent follicle, separating an oocyte and its associated prefollicle cells from the cell nest. Folliculogenesis is completed when the oocyte and the now follicle cells are totally encompassed by a basement membrane. Cells derived from the ovarian stroma encompass the newly‐formed ovarian follicle, and become the theca, thereby completing the formation of the follicle complex. Follicle complexes remain attached to the germinal epithelium as they share a portion of basement membrane. This attachment site is where the oocyte is released during ovulation. The postovulatory follicle complex is continuous with the germinal epithelium as both are supported by a continuous basement membrane. The findings in P. maculatus reinforce the hypothesis that ovarian follicle formation represents a conserved process throughout vertebrate evolution. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

4.
Nitric oxide (NO) has recently emerged as a regulator of functional and structural regression in mammalian reproductive tissues. However, the role of NO in ovulation and postovulatory follicles (POF) that undergo regression in laying birds is unclear. In the present investigation, the expression profiles of iNOS mRNA, tissue NO levels and the percentage of apoptotic cells were studied in the regressing chicken postovulatory follicle (POF). The postovulatory follicles gradually lost weight during its regression and reached the lowest weight on POF5. The number of apoptotic cells was increased significantly during the regression of POF. The mRNA expression of iNOS was noticed in the second largest preovulatory follicle (F2) that subsequently increased in the largest preovulatory follicle (F1). However, the level of iNOS mRNA was declined immediately after ovulation and thereafter upregulated again to reach a peak in POF3 with a subsequent reduction in POF5 to below the basal level. The tissue NO levels followed a similar pattern except with a peak production in POF4. The gross regression and apoptosis in POFs were well associated with iNOS expression and NO production. In conclusion, NO appears to play a role in ovulation and regression of postovulatory follicle in chicken.  相似文献   

5.
Formation of the germinal epithelium and folliculogenesis during ovarian development in Cichlasoma dimerus were described at the light‐ and electron‐microscopic levels. Prior to gonadal differentiation, germ cells and enveloping support cells reside within an inpocketing of the coelomic epithelium. Separation of the germinal and interstitial compartments of the gonad by a basement membrane is apparent from early gonadal development. Upon ovarian differentiation, oogonia undergo cyst‐forming divisions leading to the formation of clusters of interconnected cystocytes that synchronously enter meiosis, becoming oocytes. At the pachytene step, each oocyte becomes individualized by cytoplasmic extensions of prefollicle cells, thereby developing as an ovarian follicle. Subsequent somatic reorganization leads to the formation of the ovarian lumen in a cephalo‐caudal gradient. As a result, the germinal epithelium becomes internalized and lines the ovarian lumen. As defined by its origin from the germinal epithelium, the ovarian follicle is composed of an oocyte and the surrounding follicle cells. Thecal cells derived from the stroma encompass the basement membrane outside the follicle, thus forming a follicle complex. A common basement membrane is shared by the germinal epithelium and the follicle complex along a small portion of its surface. This point of attachment represents the site at which the oocyte would be released to the ovarian lumen during ovulation.  相似文献   

6.
The chronological changes of the microvasculature during follicular development, ovulation and luteinization of mouse ovaries were examined by observation of serial histological sections, lectin angiographs and resin-corrosion casts. Graafian follicles possessing oocytes with germinal vesicles were surrounded by a few layers of basket-like capillary wreath adjacent to the follicular basement membrane. Just before ovulation 11–12 hr after hCG administration, some theca cells differentiated into hypertrophic cells, and the follicular basement membrane underwent fragmentation. Then the capillaries within the theca interna became dilated, and hyperpermeable and appeared to be injured. The capillary wreath extended into the follicle via the hypertrophied theca interna. After ovulation, the follicular wall became markedly edematous. Capillary branches invaded the granulosa cell layer of the ruptured follicle from the region of extravasation to form an intricate capillary network. The capillary network occupied the whole corpus luteum until 24 hr after hCG administration.  相似文献   

7.
The ovarian germinal epithelium in the common snook, Centropomus undecimalis, is described. It consists of epithelial and prefollicle cells that surround germ cells, either oogonia or oocytes, respectively. The germinal epithelium borders a body cavity, the ovarian lumen, and is supported by a basement membrane that also separates the epithelial compartment of the ovarian lamellae from the stromal compartment. During folliculogenesis, the epithelial cells, whose cytoplasmic processes encompass meiotic oocytes, transform into prefollicle cells, which become follicle cells at the completion of folliculogenesis. The follicle is a derivative of the germinal epithelium and is composed of the oocyte and surrounding follicle cells. It is separated from the encompassing theca by a basement membrane. The cells that form the theca interna are derived from prethecal cells within the extravascular space of the ovarian stroma. The theca externa differentiates from undifferentiated cells within the stromal compartment of the ovary, from within the extravascular space. The theca interna and the theca externa are not considered to be part of the follicle and are derived from a different ovarian compartment than the follicle. Meiosis commences while oocytes are still within the germinal epithelium and proceeds as far as arrested diplotene of the first meiotic prophase. The primary growth phase of oocyte development also begins while oocytes are still within the germinal epithelium or attached to it in a cell nest. The definitions used herein are consistent between sexes and with the mammalian literature.  相似文献   

8.
The postovulatory follicle (POF) in birds is an enigmatic structure, the function of which remains largely unknown. Previous studies on chickens have shown that removal of POFs leads to the postponement of oviposition and the disturbance of broody behavior. One suggestion is that POFs may secrete some crucial hormones or cytokines to act on reproductive organs. However, such secretions and their specific target organs remain to be identified. Here, we investigate the putative functions of POFs in promoting the development of prehierarchical follicles in chickens and explore the possible signaling mechanisms controlling these processes. Results show that POFs express steroidogenic acute regulatory protein (STAR), cholesterol side‐chain cleavage enzyme (CYP11A1), cyclooxygenase 1 (COX1), and COX2 in granulosa cells (GCs), and, most notably, that POF1 produces more prostaglandin E2 (PGE2) or prostaglandin F2α than do the F1 follicle or the other POFs. Using coculture systems, we also found that POF1 or GCs from POF1 (POF1‐GCs) significantly promote the proliferation of theca externa cells of small white follicles (SWFs, one phase of the prehierarchical follicle). Treatment with PGE2 significantly facilitates theca externa cell proliferation in SWFs. This POF‐stimulating effect on SWF growth was prevented by treatment with indomethacin (COX inhibitor) or TG6‐10‐1 (PGE2 type 2 receptor [EP2] antagonist). Therefore, POF1 may secrete PGE2 to stimulate the progression of SWF by PGE2–EP2 signaling. These results indicate that POF1 may serve as a transient supplementary endocrine gland in the chicken ovary that stimulates the development of the prehierarchical follicles through PGE2–EP2 signaling.  相似文献   

9.
The dynamics of cellular development and homeostasis of the ovary depend on the balance between proliferation and cell death throughout the reproductive cycle. Millerichthys robustus is an annual fish whose ovarian follicles develop asynchronously, allowing daily reproduction from sexual maturity until death. The objective of this research is to describe, histologically, the processes of follicular atresia and regression of postovulatory follicular complexes (POC) throughout a reproductive cycle of M. robustus. Patterns of cell death were documented by apoptosis in atretic follicles and POC, and necrosis in the POC after ovulation with an associated inflammatory response. Atretic follicles were seen from the onset of sexual maturity, during week three post-hatching (PH), both in primary growth (from the Cortical alveoli step, with folliculogenesis completed) and secondary growth Stages, with a higher prevalence in the latter. POCs were observed in different stages of regression from week four PH until the death of the fish. The apoptotic characteristics found were: (i) fragmentation of the nuclear membrane and zona pellucida, and liquefaction of the cortical alveoli and yolk; (ii) follicular cells becoming phagocytic, increasing their size, and migrating within the oocyte; and (iii) formation of an intrafollicular lumen, a product of phagocytosis of the oocyte constituents and dispersed pigments that remain after the digestion of yolk and cortical alveoli. The morphological changes of the follicular cells of the POC, from a squamous morphology after ovulation to columnar during its regression with PAS+ contents, was documented, suggesting a secretory activity.  相似文献   

10.
Angiogenesis in the preovulatory follicle is confined to the theca cell layers, and penetration of capillaries through the basement membrane into the granulosa cell layers does not occur until after ovulation. However, elevated expression of the angiogenic growth factor (VEGF) has been reported in the cumulus cells surrounding the oocyte, which are expelled from the follicle during ovulation. This spatial and temporal discrepancy between VEGF expression and angiogenesis was studied here in the rat ovarian follicle, and we showed that cumulus cells secrete to the follicular fluid, in addition to VEGF, material with antiangiogenic activity that blocks endothelial cell proliferation, migration, and capillary formation in vitro. Hyaluronic acid produced by the cumulus cells can account for this antiangiogenic activity. Degradation of hyaluronic acid by hyaluronidase restored proliferation and migration of endothelial cells directed toward the cumulus. Inhibition of hyaluronic acid synthesis with 6-diazo-5-oxo-1-norleucine restored endothelial proliferation and migration in vitro, and it also resulted in early penetration of capillaries across the follicular basement membrane in vivo. These results support the role of hyaluronic acid produced by the cumulus cells as a high-molecular-weight, antiangiogenic shield that prevents premature vascularization of the preovulatory follicle by blocking endothelial cell migration and proliferation.  相似文献   

11.
Cellular aspects of oocyte development of the Mexican rivulus Millerichthys robustus were morphologically described in order to analyze ovarian function and the cellular recruitment dynamics associating it with life history strategies of annual killifishes. Millerichthys is an iteroparous batch spawner with continuous oocyte recruitment and indeterminate fecundity with asynchronous development of the follicles. It has two ovaries of cystovarian type, with a central lumen, which communicates with the outside through the caudal region of the ovary, that is, the gonoduct. From the walls of the ovary, irregular lamellae composed of germinal epithelium and vascularized stroma project. Oogenesis starts with oogonial proliferation, found alone or in nests within the germinal epithelium. The oogonia come into meiosis becoming oocytes and advancing to the chromatin nucleolus stage and to early primary growth stage. Folliculogenesis is completed in the primary growth stage and cortical alveoli step. Follicles moves toward the stroma, but they continue to be attached to the germinal epithelium through the basement membrane until ovulation. The inclusion of fluid yolk in the follicles during the secondary growth stage was observed. During ovulation, the follicle collapsed, the oocyte was released into the lumen, and the constitutive elements of the post-ovulatory follicle complex remained in the stroma.  相似文献   

12.
This is the first evidence of programmed cell death, or apoptosis, occurring in the postovulatory follicle (POF) of teleost fish. Females of Astyanax bimaculatus lacustris were submitted to induced ovulation through injecting pituitary extract. Ultrastructural analyses of POFs at time intervals varying from zero to four days postspawning showed several characteristic events of the apoptosis. Typical apoptotic figures, such as nucleus with chromatin condensation underlying the nuclear envelope in a crescent pattern and apoptotic bodies at different stages of formation and reabsorption, were observed in the follicular cells a few days after the onset of the postovulatory period. The results indicated that apoptosis is the major mechanism responsible for the elimination of the follicular cells in the POFs of A. bimaculatus lacustris during ovarian recovery postspawning. It is suggested that POFs might be used as an experimental model in dynamic studies involving cell death in teleosts.  相似文献   

13.
The distribution of binding sites for human chorionic gonadotropin (hCG) in the preovulatory follicle was studied by autoradiography. An ovulatory dose (10 IU/rat) of [125I]hCG (1.4 muCi/IU) was administered intravenously, and large Graafian follicles were isolated 3 h later by microdissection. Injection of excess unlabeled hCG (500 IU/rat) prevented uptake of radioactivity by the follicle, indicating that binding of iodinated hormone was confined to specific and saturable receptor sites. The density of bound hormone molecules was highest in the theca interna and in three to four layers of mural granulosa cells adjacent to the basement membrane; labeling was chiefly associated with the cell borders. No significant binding could be detected either on the oocyte or on the cumulus cells surrounding the oocyte. We therefore suggest that the induction of ovum maturation does not require attachment of the hormone to the oocyte itself or to follicle cells in its immediate vicinity.  相似文献   

14.
Summary In captive African catfish, Clarias gariepinus, ovulation was induced with human chorionic gonadotropin (HCG) 4 I.U./g body weight to study the function of postovulatory follicles (POFs). Ultrastructural and enzyme-histochemical data indicate that, apart from special theca cells, the granulosa of relative young POFs (i.e., from 16 h and 28 h after HCG-injection) is capable of producing steroids. Possible functions of the synthesized steroids are discussed. Histological comparison of POFs from stripped and from unstripped fish, as well as histochemical investigation of the contents of ovulated ova and granulosa of POFs at 48 h after HCG-injection, showed that the latter structure is involved in phagocytosis of the disintegrating ovulated eggs. The polysaccharide-lipid-protein material, initially taken up by heterophagolysosomes of the granulosa cells, subsequently undergoes fatty degeneration. The granulosa cells of the POFs showed strong acid phosphatase activity and abundant granular endoplasmic reticulum from 16 h after HCG-injection onward; heterophagolysosomes appeared at 32 h. These results indicate that after ovulation the phagocytotic function of the granulosa develops progressively. Autophagolysosomes, responsible for the final disintegration of POFs, become increasingly evident in the granulosa cells with increasing time after ovulation.  相似文献   

15.
Culture of preantral follicles has important biotechnological implications through its potential to produce large quantities of oocytes for embryo production and transfer. A long-term culture system for bovine preantral follicles is described. Bovine preantral follicles (166 +/- 2.15 micrometer), surrounded by theca cells, were isolated from ovarian cortical slices. Follicles were cultured under conditions known to maintain granulosa cell viability in vitro. The effects of epidermal growth factor (EGF), insulin-like growth factor (IGF)-I, FSH, and coculture with bovine granulosa cells on preantral follicle growth were analyzed. Follicle and oocyte diameter increased significantly (P < 0.05) with time in culture. FSH, IGF-I, and EGF stimulated (P < 0.05) follicle growth rate but had no effect on oocyte growth. Coculture with granulosa cells inhibited FSH/IGF-I-stimulated growth. Most follicles maintained their morphology throughout culture, with the presence of a thecal layer and basement membrane surrounding the granulosa cells. Antrum formation, confirmed by confocal microscopy, occurred between Days 10 and 28 of culture. The probability of follicles reaching antrum development was 0.19 for control follicles. The addition of growth factors or FSH increased (P < 0.05) the probability of antrum development to 0.55. Follicular growth appeared to be halted by slower growth of the basement membrane, as growing follicles occasionally burst the basement membrane, extruding their granulosa cells. In conclusion, a preantral follicle culture system in which follicle morphology can be maintained for up to 28 days has been developed. In this system, FSH, EGF, and IGF-I stimulated follicle growth and enhanced antrum formation. This culture system may provide a valuable approach for studying the regulation of early follicular development and for production of oocytes for nuclear/embryo transfer, but further work is required.  相似文献   

16.
Summary The rabbit Graafian follicles are encircled by a capillary network between the theca interna and the avascular membrana granulosa. After injection of an ovulatory dose of human chorionic gonadotrophin (HCG) the theca interna cells showed an increase in the amount of smooth endoplasmic reticulum, lipid droplets and mitochondria with tubular cristae. In addition, considerably more junctions, similar to the abutment nexuses of granulosa cells were found; annular nexuses also appeared. At 4 hours after injection of HCG a prominent oedema was evident in the theca interna layer, particularly in the apical region.Small fenestrations in the endothelium of the blood capillaries increased in amount after HCG injection, and close to the time of ovulation, large gaps or perforations, 1–3 in diameter, were found in the thin, distended part of the endothelial cells. The surrounding basement membrane became fragmented and partly lost, so that a seemingly free passage from the capillary lumen to the interstitium was eventually established. Leakage of fluid, causing interstitial oedema, presumably proceeds until the pressure in the pericapillary interstitium has risen to the pressure in the capillaries. Some hours before and up to ovulation the pericapillary interstitium has also broad communications with the cavity of the follicles. Therefore, both pressure and fluid can be passed from the capillaries-via the interstitium-to the follicle antrum. However, influx of fluid with subsequent follicle expansion and ovulation-at constant pressure-does not occur until the tensile strength of the follicle wall has decreased.This investigation was supported by grants from the Swedish Medical Besearch Council (Projects No. B72-12X-78-07A, B73-12X-78-08B and B74-12X-78-09C). The technical assistance of Miss Ingalis Fransson, Miss Kerstin Nilsson, and Mrs. Ulla-Britt Westman is greatly appreciated.  相似文献   

17.
The established follicle envelope of Necturus maculosus consists of a layer of follicle cells (granulosa) surrounding the developing oocyte, a layer of theca comprised of connective tissue cells, fibers, and matrix, and a layer of serosal cells. The changes in shape and fine structure of these layers during differentiation accompanying oogenesis are described. The cells and capillaries of the follicle envelope are engaged in an extensive pinocytotic activity, the details of which are described. We used cytochemical techniques to analyze the activity of the follicle envelope with respect to lipid accumulation and alkaline phosphatase activity. Radioautographic results indicate that cells of the follicle envelope are capable of incorporating tritium-labeled uridine and amino acids at certain times during oocyte growth. A comparative analysis was made of the soluble proteins in follicle envelopes isolated from immature oocytes and of those in follicle envelopes isolated from nearly mature oocytes and in postovulatory follicles. After the oocyte is ovulated, the cells of the follicle envelope are converted into a postovulatory follicle. The cells of the postovulatory follicle undergo further differentiation resulting in their becoming actively engaged in the formation of a secretion, the details of which are described at the electron microscope level. Analysis of the postovulatory follicle by thin-layer chromatography and cytochemistry demonstrated the presence of a wide variety of lipid substances and the possible presence of steroid. That the postovulatory follicle may be engaged in steroid biosynthesis is also suggested by studies involving the demonstration of 3 β-hydroxysteroid dehydrogenase activity with cytochemical techniques applied to frozen sections and to soluble proteins separated by gel electrophoresis.  相似文献   

18.
The swamp eel, Synbranchus marmoratus, is a protogynous, diandric species. During sex reversal, the ovarian germinal epithelium, which forms follicles containing an oocyte and encompassing follicle cells during the female portion of the life cycle, produces numerous invaginations, or acini, into the ovarian stroma. Within the acini, the gonia that formerly produced oocytes become spermatogonia, enter meiosis, and produce sperm. The acini are bounded by the basement membrane of the germinal epithelium. Epithelial cells of the female germinal epithelium, which formerly became follicle (granulosa) cells, now become Sertoli cells in the developing testis. Subsequently, lobules and testicular ducts form. The swamp eel testis has a lobular germinal compartment in both primary and secondary males, although the germinal compartment in testes of secondary males resides within the former ovarian lamellae. The germinal compartment, supported by a basement membrane, is composed of Sertoli and germ cells that give rise to sperm. Histological and immunohistochemical techniques were used to describe the five reproductive classes that were observed to occur during the annual reproductive cycle: regressed, early maturation, mid-maturation, late maturation, and regression. These classes are differentiated by the presence of continuous or discontinuous germinal epithelia and by the types of germ cells present. Synbranchus marmoratus has a permanent germinal epithelium. Differences between the germinal compartment of the testes of primary and secondary males were not observed.  相似文献   

19.
Dove ovarian follicle is a complex structure composed of oocyte surrounded by a somatic compartment consisting of theca externa, theca interna and granulosa. The structure of ovarian follicle (1 and 2 mm) of dove was studied by electron microscopy. The granulosa was pseudostratified in the 1-mm-diameter follicles and stratified with two or three irregular rows of cells in the 2-mm-diameter follicles. In the larger follicle indentations between oocyte and granulosa cells become more numerous and the microvilli of granulosa cell elongated to form a zona radiata with similarly elongated oocyte microvilli. Lining bodies were present at the tips of granulosa microvilli and in the cortical region of the oocyte. In the oocyte cortex were observed coated pits, coated vesicles, dense tubules, multivesicular bodies and primordial yolk spheres. Primordial yolk spheres may contain lining bodies and were observed fused with dense tubules and multivesicular bodies or associated with smooth cisternae.  相似文献   

20.
The ultrastructural organization of the previtellogenic follicles of the caecilians Ichthyophis tricolor and Gegeneophis ramaswamii, of the Western Ghats of India, were observed. Both species follow a similar seasonal reproductive pattern. The ovaries contain primordial follicles throughout the year with previtellogenic, vitellogenic, or postvitellogenic follicles, depending upon the reproductive status. The just-recruited primordial follicle includes an oocyte surrounded by a single layer of follicle and thecal cells. The differentiation of the theca into externa and interna layers, the follicle cells into dark and light variants, and the appearance of primordial yolk platelets and mitochondrial clouds in the ooplasm mark the transition of the primordial follicle into a previtellogenic follicle. During further development of the previtellogenic follicle the following changes occur: i) the theca loses distinction as externa and interna; ii) all the follicle cells become the dark variant and increase in the complexity of ultrastructural organization; iii) the nucleus of the oocyte transforms into the germinal vesicle and there is amplification of the nucleoli; iv) the primordial yolk platelets of the cortical cytoplasm of the oocyte increase in abundance; v) the mitochondrial clouds fragment and the mitochondria move away from the clouds, leaving behind the cementing matrix, which contains membrane-bound vesicles of various sizes, either empty or filled with a lipid material; vi) the perivitelline space appears first as troughs at the junctional points between the follicle cells and oocyte, which subsequently spread all around to become continuous; vii) macrovilli and microvilli develop from the follicle cells and oocyte, respectively; and viii) the precursor material of the vitelline envelop arrives at the perivitelline space. The sequential changes in the previtellogenic follicles of two species of caecilians are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号