首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Aluminium oxide (Al2O3) has widely been used for catalysts, insulators, and composite materials for diverse applications. Herein, we demonstrated if γ‐Al2O3 was useful as a luminescence support material for europium (Eu) (III) activator ion. The hydrothermal method and post‐thermal treatment at 800°C were employed to synthesize Eu(III)‐doped γ‐Al2O3 nanofibre structures. Luminescence characteristics of Eu(III) ions in Al2O3 matrix were fully understood by taking 2D and 3D‐photoluminescence imaging profiles. Various sharp emissions between 580 to 720 nm were assigned to the 5D07FJ (J = 0, 1, 2, 3, 4) transitions of Eu(III) activators. On the basis of X‐ray diffraction crystallography, Auger elemental mapping and the asymmetry ratio, Eu(III) ions were found to be well doped into the γ‐Al2O3 matrix at a low (1 mol%) doping level. A broad emission at 460 nm was substantially increased upon higher (2 mol%) Eu(III) doping due to defect creation. The first 3D photoluminescence imaging profiles highlight detailed understanding of emission characteristics of Eu(III) ions in Al oxide‐based phosphor materials and their potential applications.  相似文献   

4.
Pancreatic cancer is a highly aggressive malignancy with limited treatment options. Type‐I interferons (e.g. IFN‐α/‐β) have several anti‐tumour activities. Over the past few years, clinical studies evaluating the effect of adjuvant IFN‐α therapy in pancreatic cancer yielded equivocal results. Although IFN‐α and ‐β act via the type‐I IFN receptor, the role of the number of receptors present on tumour cells is still unknown. Therefore, this study associated, for the first time, in a large panel of pancreatic cancer cell lines the effects of IFN‐α/‐β with the expression of type‐I IFN receptors. The anti‐tumour effects of IFN‐α or IFN‐β on cell proliferation and apoptosis were evaluated in 11 human pancreatic cell lines. Type‐I IFN receptor expression was determined on both the mRNA and protein level. After 7 days of incubation, IFN‐α significantly reduced cell growth in eight cell lines by 5–67%. IFN‐β inhibited cell growth statistically significant in all cell lines by 43–100%. After 3 days of treatment, IFN‐β induced significantly more apoptosis than IFN‐α. The cell lines variably expressed the type‐I IFN receptor. The maximal inhibitory effect of IFN‐α was positively correlated with the IFNAR‐1 mRNA (P < 0.05, r = 0.63), IFNAR‐2c mRNA (P < 0.05, r = 0.69) and protein expression (P < 0.05, r = 0.65). Human pancreatic cancer cell lines variably respond to IFN‐α and ‐β. The expression level of the type‐I IFN receptor is of predictive value for the direct anti‐tumour effects of IFN‐α treatment. More importantly, IFN‐β induces anti‐tumour effects already at much lower concentrations, is less dependent on interferon receptor expression and seems, therefore, more promising than IFN‐α.  相似文献   

5.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

6.
7.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

8.
Drug‐protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β2‐adrenoceptor (β 2AR) by linkage of the receptor on macroporous silica gel surface through N ,N ′‐carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site‐directed molecular docking. Subsequent application of immobilized β 2AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount–dependent method. The association constants of protopine to β 2AR by the 2 methods were (1.00 ± 0.06) × 105M−1 and (1.52 ± 0.14) × 104M−1. The numbers of binding sites were (1.23 ± 0.07) × 10−7M and (9.09 ± 0.06) × 10−7M, respectively. These results indicated that β 2AR is the specific target for therapeutic action of protopine in vivo. The target‐drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount–dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high‐throughput drug‐receptor interaction analysis.  相似文献   

9.

Aims

To determine the herd prevalence of Enterobacteriaceae producing CTX‐M‐type extended‐spectrum β‐lactamases (ESBLs) among 381 dairy farms in Japan.

Methods and Results

Between 2007 and 2009, we screened 897 faecal samples using BTB lactose agar plates containing cefotaxime (2 μg ml?1). Positive isolates were tested using ESBL confirmatory tests, PCR and sequencing for CTX‐M, AmpC, TEM and SHV. The incidence of Enterobacteriaceae producing CTX‐M‐15 (= 7), CTX‐M‐2 (= 12), CTX‐M‐14 (= 3), CMY‐2 (= 2) or CTX‐M‐15/2/14 and CMY‐2 (= 4) in bovine faeces was 28/897 (3·1%) faecal samples. These genes had spread to Escherichia coli (= 23) and three genera of Enterobacteriaceae (= 5). Herd prevalence was found to be 20/381 (5·2%) dairy farms. The 23 E. coli isolates showed clonal diversity, as assessed by multilocus sequence typing and pulsed‐field gel electrophoresis. The pandemic E. coli strain ST131 producing CTX‐M‐15 or CTX‐M‐27 was not detected.

Conclusions

Three clusters of CTX‐M (CTX‐M‐15, CTX‐M‐2, CTX‐M‐14) had spread among Japanese dairy farms.

Significance and Impact of the Study

This is the first report on the prevalence of multidrug‐resistant CTX‐M‐15–producing E. coli among Japanese dairy farms.  相似文献   

10.
Cleidocranial dysplasia (CCD) is caused by haploinsufficiency in RUNX2 function. We have previously identified a series of RUNX2 mutations in Korean CCD patients, including a novel R131G missense mutation in the Runt‐homology domain. Here, we examine the functional consequences of the RUNX2R131G mutation, which could potentially affect DNA binding, nuclear localization signal, and/or heterodimerization with core‐binding factor‐β (CBF‐β). Immunofluorescence microscopy and western blot analysis with subcellular fractions show that RUNX2R131G is localized in the nucleus. Immunoprecipitation analysis reveals that heterodimerization with CBF‐β is retained. However, precipitation assays with biotinylated oligonucleotides and reporter gene assays with RUNX2 responsive promoters together reveal that DNA‐binding activity and consequently the transactivation of potential of RUNX2R131G is abrogated. We conclude that loss of DNA binding, but not nuclear localization or CBF‐β heterodimerization, causes RUNX2 haploinsufficiency in patients with the RUNX2R131G mutation. Retention of specific functions including nuclear localization and binding to CBF‐β of the RUNX2R131G mutation may render the mutant protein an effective competitor that interferes with wild‐type function. J. Cell. Biochem. 110: 97–103, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
β‐adrenoceptors are the common pharmacological targets for the treatment of cardiovascular diseases and asthma. Genetic modifications of β‐adrenergic system in engineered mice affect their lifespan. Here, we tested whether genes encoding for key components of the β‐adrenergic signaling pathway are associated with human longevity. We performed a 10‐year follow‐up study of the Chinese longitudinal healthy longevity survey. The Han Chinese population in this study consisted of 963 long‐lived and 1028 geography‐matched young individuals. Sixteen SNPs from ADRB1, ADRB2, ADCY5, ADCY6, and MAPK1 were selected and genotyped. Two SNPs, rs1042718 (C/A) and rs1042719 (G/C), of ADRB2 in linkage disequilibrium (D' = 1.0; r2 = 0.67) were found to be associated with enhanced longevity in men in two geographically isolated populations. Bonferroni‐corrected P‐values in a combined analysis were 0.00053–0.010. Men with haplotype A‐C showed an increased probability to become centenarians (the frequency of A‐C in long‐lived and young individuals are 0.332 and 0.250, respectively, OR = 1.49, CI 95% = 1.17–1.88, = 0.0007), in contrast to those with haplotype C‐G (the frequency of C‐G in long‐lived and young individuals are 0.523 and 0.635, respectively, OR = 0.63, CI 95% = 0.51–0.78, = 0.000018). The permuted P‐values were 0.00005 and 0.0009, respectively. ADRB2 encodes the β2‐adrenergic receptor; the haplotype A‐C markedly reduced its translational efficiency compared with C‐G (= 0.002) in transfected HEK293 cells. Thus, our data indicate that enhanced production of β2‐adrenergic receptors caused by genetic variants is inversely associated with human lifespan.  相似文献   

12.
13.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

14.
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells.  相似文献   

15.

Objectives

Although dramatic improvements of overall survival has achieved in patients with favourable histology Wilms tumour, disease recurrence is still the main cause of cancer‐related death in childhood. Long non‐coding RNAs (lncRNAs) as oncogenes or tumour suppressors are dysregulated during carcinogenesis. However, the role of lncRNAs in the pathogenesis of Wilms tumour is unknown. Here, an lncRNA LINC00473 signature that functioned as oncogene was identified in Wilms tumour.

Methods

Wilms tumour (n = 15) and relative normal tissues were collected. The LINC00473 expression and function in Wilms tumour was determined. The LncRNA‐miRNA network of LINC00473 was analysed in vitro and vivo.

Results

We uncovered that the expression of LINC00473 was elevated in tumour tissues than that in relative normal tissues. Higher LINC00473 levels correlated to higher stage and unfavourable histology Wilms tumour. Mechanistically, knockdown of LINC00473 inhibited cell vitality and induced Bcl‐2‐dependent apoptosis and G1/S arrest via CDK2 and cyclin D1. Moreover, LINC00473 harboured binding sites for miR‐195 and limited miR‐195 availability in a dose‐dependent manner. Forced expression of miR‐195 impaired tumour survival and metastasis, which, however, could be restored by LINC00473. Furthermore, IKKα was the downstream of LINC00473/miR‐195 signals and could be directly targeted by miR‐195 to participate LINC00473‐induced tumour progression. Loss‐of‐function of LINC00473 in vivo effectively promoted the regression of Wilms tumour via miR‐195/IKKα‐mediated growth inhibition.

Conclusion

LINC00473 as an oncogene is up‐regulated to participate into the molecular pathogenesis of Wilms tumour via miR‐195/IKKα.  相似文献   

16.
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR‐200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR‐200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real‐time polymerase chain reaction revealed that the expression of miR‐200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit‐8 assay revealed that cell viability was reduced by overexpressing miR‐200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR‐200b/c/429 overexpression. Sphere‐forming and western blot assays demonstrated that miR‐200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor‐κB (NF‐κB) pathway was confirmed to be associated with Wilms' tumor progression; miR‐200b/c/429 overexpression inactivated NF‐κB pathway as miR‐200b/c/429 was identified to target IκB kinase β (IKK‐β), an NF‐κB pathway‐related gene. Moreover, miR‐200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR‐200b/c/429 to regulate IKK‐β expression and then activated NF‐κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK‐β could reverse the effect of miR‐200b/c/429 inhibition on the progression of sh‐LINC00667‐transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR‐200b/c/429 family to regulate IKK‐β.  相似文献   

17.
Relatively little is known about mitochondria metabolism in differentiating embryonic stem (ES) cells. Present research focused on several elements of cellular energy metabolism in hepatic‐like tissue derived from mouse ES cells. We demonstrated that mitochondrial location patterns and mitochondrial membrane potential (ΔΨm) existed in subsequent differentiation of the tissue. Mitochondriogenesis appeared at the early stage and kept a normal ΔΨm in differentiated mature hepatocytes. Peroxisome proliferator‐activated receptor‐α (PPAR‐α) expression was transitorily increased at the beginning, and kept a relatively low level later, which accompanied by expression of PPAR‐γ coactivator (PGC)‐1α, a master regulator of mitochondrial biogenesis. PPAR‐β expression showed robust up‐regulation in the late differentiation course. Enhanced co‐expressions of PPAR‐β and albumin with catalysis of UDP‐glucuronosyltransferases (UGTs) were observed at mature stage. While PPAR‐γ expression changed little before and after differentiation. Mitochondriogenesis could be accelerated by PPAR‐α specific agonist WY14643 and abolished by its antagonist GW6471 at the early stage. Neither of them affected mitochondrial ΔΨm and albumin generation in the differentiated hepatocytes. Furthermore, maturation of hepatic‐like tissue and mitochondriogenesis in hepatocyte could be efficiently stimulated by PPAR‐β specific agonist L165041 and abolished by PPAR‐β specific antagonist GSK0660, but not affected by PPAR‐γ specific agonist GW1929. In conclusion, the derived hepatic tissue morphologically possessed cellular energy metabolism features. PPAR‐α seemed only necessary for early mitochondriogenesis, while less important for ΔΨm retention in the mature tissue derived. The stimulation of PPAR‐β but not ‐γ enhanced hepatogenesis, hepatocytes maturation, and mitochondriogenesis. PPAR‐β took an important role in cellular energy metabolism of hepatogenesis. J. Cell. Biochem. 109: 498–508, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist‐induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by IL‐1β. However, the mechanisms underlying IL‐1β‐induced cPLA2 expression and PGE2 synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. IL‐1β‐induced cPLA2 protein and mRNA expression, PGE2 production, or phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which was attenuated by pretreatment with the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNAs of MEK1, p42, p38, and JNK2. IL‐1β‐induced cPLA2 expression was also inhibited by pretreatment with a NF‐κB inhibitor, helenalin or transfection with siRNA of NIK, IKKα, or IKKβ. IL‐β‐induced NF‐κB translocation was blocked by pretreatment with helenalin, but not U0126, SB202190, and SP600125. In addition, transfection with p300 siRNA blocked cPLA2 expression induced by IL‐1β. Moreover, p300 was associated with the cPLA2 promoter, which was dynamically linked to histone H4 acetylation stimulated by IL‐1β. These results suggest that in HTSMCs, activation of MAPKs, NF‐κB, and p300 are essential for IL‐1β‐induced cPLA2 expression and PGE2 secretion. J. Cell. Biochem. 109: 1045–1056, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Phytochemical investigation from the tube roots of Butea superba, led to the isolation and identification of a new 2‐aryl‐3‐benzofuranone named superbanone ( 1 ), one benzoin, 2‐hydroxy‐1‐(2‐hydroxy‐4‐methoxyphenyl)‐2‐(4‐methoxyphenyl)ethanone ( 2 ), eight pterocarpans ( 3  –  10 ), and eleven isoflavonoids ( 11  –  21 ). Compound 2 was identified for the first time as a natural product. The structure of the isolated compounds was elucidated using spectroscopic methods, mainly 1D‐ and 2D‐NMR. The isolated compounds and their derivatives were evaluated for α‐glucosidase inhibitory and antimalarial activities. Compounds 3 , 7 , 8 , and 11 showed promising α‐glucosidase inhibitory activity (IC50 = 13.71 ± 0.54, 23.54 ± 0.75, 28.83 ± 1.02, and 12.35 ± 0.36 μm , respectively). Compounds 3 and 11 were twofold less active than the standard drug acarbose (IC50 = 6.54 ± 0.04 μm ). None of the tested compounds was found to be active against Plasmodium falciparum strain 94. On the basis of biological activity results, structure–activity relationships are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号