首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The local translation, which is regulated by extracellular stimuli such as guidance molecules, in growth cones of neurons provides a molecular mechanism for axonal development. In this study, we performed immunocytochemistry together with atomic force microscopy to investigate the localization of ribosomal proteins in the growth cones of rat dorsal root ganglion (DRG) neurons. The immunoreactivity of ribosomal protein P0/1/2 and S6, and novel protein synthesis were observed in the central, sterically bulky region of growth cones. Brain derived neurotrophic factor (BDNF) reduced the eEF2 phosphorylation, indicating its activation, and enhanced protein synthesis within 30 min. The effects of BDNF were completely inhibited by rapamycin, an inhibitor of mammalian target of rapamycin (mTOR). These results indicated that BDNF rapidly activates translation and enhances novel protein synthesis in growth cones of DRG though the mTOR signaling.  相似文献   

3.
Slits mediate multiple axon guidance decisions, but the mechanisms underlying the responses of growth cones to these cues remain poorly defined. We show here that collapse induced by Slit2-conditioned medium (Slit2-CM) in Xenopus retinal growth cones requires local protein synthesis (PS) and endocytosis. Slit2-CM elicits rapid activation of translation regulators and MAP kinases in growth cones, and inhibition of MAPKs or disruption of heparan sulfate blocks Slit2-CM-induced PS and repulsion. Interestingly, Slit2-CM causes a fast PS-dependent decrease in cytoskeletal F-actin concomitant with a PS-dependent increase in the actin-depolymerizing protein cofilin. Our findings reveal an unexpected link between Slit2 and cofilin in growth cones and suggest that local translation of actin regulatory proteins contributes to repulsion.  相似文献   

4.
Reduced levels of the SMN (survival of motoneuron) protein cause spinal muscular atrophy, the main form of motoneuron disease in children and young adults. In cultured motoneurons, reduced SMN levels lead to disturbed axon growth that correlates with reduced actin mRNA and protein in growth cones, indicating that anterograde transport and local translation of β-actin mRNA are altered in this disease. However, it is not fully understood how local translation of the β-actin mRNA is regulated in SMN-deficient motoneurons. Here, we established a lentiviral GFP-based reporter construct to monitor local translation of β-actin mRNA. Time-lapse imaging of fluorescence recovery after photobleaching (FRAP) in living motoneurons revealed that β-actin is locally translated in the growth cones of embryonic motoneurons. Interestingly, local translation of the β-actin reporter construct was differentially regulated by various Laminin isoforms, indicating that Laminins provide extracellular cues for the regulation of local translation in growth cones. Notably, local translation of β-actin mRNA was deregulated in motoneurons from a mouse model for the most severe form of SMA (Smn ?/? ;SMN2). Taken together our findings suggest that local translation of β-actin in growth cones of motoneurons is regulated by Laminin signalling and that this signalling is disturbed in SMA.  相似文献   

5.
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain‐containing protein, is a neuron‐specific and actin filament‐relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament‐binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones.

  相似文献   


6.
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P‐) domain]. Actin filament organization in growth cones is regulated by actin‐binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin‐binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.

  相似文献   


7.
D S Campbell  C E Holt 《Neuron》2001,32(6):1013-1026
Growth cones contain mRNAs, translation machinery, and, as we report here, protein degradation machinery. We show that isolated retinal growth cones immediately lose their ability to turn in a chemotropic gradient of netrin-1 or Sema3A when translation is inhibited. Translation inhibition also prevents Sema3A-induced collapse, while LPA-induced collapse is not affected. Inhibition of proteasome function blocks responses to netrin-1 and LPA but does not affect Sema3A responses. We further demonstrate in isolated growth cones that netrin-1 and Sema3A activate translation initiation factors and stimulate a marked rise in protein synthesis within minutes, while netrin-1 and LPA elicit similar rises in ubiquitin-protein conjugates. These results suggest that guidance molecules steer axon growth by triggering rapid local changes in protein levels in growth cones.  相似文献   

8.
The neuron‐specific ELAV/Hu family member, HuD, interacts with and stabilizes GAP‐43 mRNA in developing neurons, and leads to increased levels of GAP‐43 protein. As GAP‐43 protein is enriched in growth cones, it is of interest to determine if HuD and GAP‐43 mRNA are associated in developing growth cones. HuD granules in growth cones are found in the central domain that is rich in microtubules and ribosomes, in the peripheral domain with its actin network, and in filopodia. This distribution of HuD granules in growth cones is dependent on actin filaments but not on microtubules. GAP‐43 mRNA is localized in granules found in both the central and peripheral domains, but not in filopodia. Ribosomes were extensively colocalized with HuD and GAP‐43 mRNA granules in the central domain, consistent with a role in the control of GAP‐43 mRNA stability in the growth cone. Together, these results demonstrate that many of the components necessary for GAP‐43 mRNA translation/stabilization are present within growth cones. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

9.
Zhang Xh  Poo MM 《Neuron》2002,36(4):675-688
Brain-derived neurotrophic factor (BDNF) is known to promote neuronal survival, guide axonal pathfinding, and participate in activity-dependent synaptic plasticity. In Xenopus nerve-muscle cultures, localized contact of a single BDNF-coated bead with the presynaptic axon resulted in potentiation of transmitter secretion at the developing synapses, but only when the bead was placed within 60 microm from the synapse. The localized potentiation induced by BDNF is accompanied by a persistent local elevation of [Ca(2+)](i) in the axon and requires constitutive presynaptic protein translation, even for axons severed from the cell body. Thus, presynaptic local TrkB signaling and protein synthesis allow a localized source of BDNF to potentiate transmitter secretion from nearby synapses, a property suited for spatially restricted synaptic modification by neurotrophins.  相似文献   

10.
Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.  相似文献   

11.
Actin polymerizes near the leading edge of nerve growth cones, and actin filaments show retrograde movement in filopodia and lamellipodia. Linkage between actin filament retrograde flow and cell adhesion molecules (CAMs) in growth cones is thought to be one of the mechanisms for axon outgrowth and guidance. However, the molecular basis for this linkage remains elusive. Here, we show that shootin1 interacts with both actin filament retrograde flow and L1-CAM in axonal growth cones of cultured rat hippocampal neurons, thereby mediating the linkage between them. Impairing this linkage, either by shootin1 RNA interference or disturbing the interaction between shootin1 and actin filament flow, inhibited L1-dependent axon outgrowth, whereas enhancing the linkage by shootin1 overexpression promoted neurite outgrowth. These results strengthen the actin flow-CAM linkage model ("clutch" model) for axon outgrowth and suggest that shootin1 is a key molecule involved in this mechanism.  相似文献   

12.
Calmodulin and profilin coregulate axon outgrowth in Drosophila   总被引:4,自引:0,他引:4  
Coordinated regulation of actin cytoskeletal dynamics is critical to growth cone movement. The intracellular molecules calmodulin and profilin actively regulate actin-based motility and participate in the signaling pathways used to steer growth cones. Here we show that in the developing Drosophila embryo, calmodulin and profilin convey complimentary information that is necessary for appropriate growth cone advance. Reducing calmodulin activity by expression of a dominant inhibitor (KA) stalls axon extension of pioneer neurons within the CNS, while a partial loss of profilin function decreases extension of motor axons in the periphery. Yet, surprisingly, when calmodulin and profilin are simultaneously reduced, the ability of both CNS pioneer axons and motor axons to extend beyond the choice points is restored. In the CNS, at the time when growth cones must decide whether to cross or not to cross the midline, a reduction in calmodulin and/or roundabout signaling causes axons to cross the midline inappropriately. These inappropriate crossings are suppressed when profilin activity is simultaneously reduced. Interestingly, the mutual suppression of calmodulin and profilin activity requires a minimal level of profilin. In KA combinations with profilin null alleles, defects in axon extension and midline guidance are synergistically enhanced rather than suppressed. Together, our data indicate that the growth cone must coordinate the activity of both calmodulin and profilin in order to advance past selected choice points, including those dictating midline crossovers.  相似文献   

13.
Lee H  Engel U  Rusch J  Scherrer S  Sheard K  Van Vactor D 《Neuron》2004,42(6):913-926
Axon guidance requires coordinated remodeling of actin and microtubule polymers. Using a genetic screen, we identified the microtubule-associated protein Orbit/MAST as a partner of the Abelson (Abl) tyrosine kinase. We find identical axon guidance phenotypes in orbit/MAST and Abl mutants at the midline, where the repellent Slit restricts axon crossing. Genetic interaction and epistasis assays indicate that Orbit/MAST mediates the action of Slit and its receptors, acting downstream of Abl. We find that Orbit/MAST protein localizes to Drosophila growth cones. Higher-resolution imaging of the Orbit/MAST ortholog CLASP in Xenopus growth cones suggests that this family of microtubule plus end tracking proteins identifies a subset of microtubules that probe the actin-rich peripheral growth cone domain, where guidance signals exert their initial influence on cytoskeletal organization. These and other data suggest a model where Abl acts as a central signaling node to coordinate actin and microtubule dynamics downstream of guidance receptors.  相似文献   

14.
Arp2/3 is a negative regulator of growth cone translocation   总被引:6,自引:0,他引:6  
Arp2/3 is an actin binding complex that is enriched in the peripheral lamellipodia of fibroblasts, where it forms a network of short, branched actin filaments, generating the protrusive force that extends lamellipodia and drives fibroblast motility. Although it has been assumed that Arp2/3 would play a similar role in growth cones, our studies indicate that Arp2/3 is enriched in the central, not the peripheral, region of growth cones and that the growth cone periphery contains few branched actin filaments. Arp2/3 inhibition in fibroblasts severely disrupts actin organization and membrane protrusion. In contrast, Arp2/3 inhibition in growth cones minimally affects actin organization and does not inhibit lamellipodia protrusion or de novo filopodia formation. Surprisingly, Arp2/3 inhibition significantly enhances axon elongation and causes defects in growth cone guidance. These results indicate that Arp2/3 is a negative regulator of growth cone translocation.  相似文献   

15.
Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.  相似文献   

16.
Gangliosides are a large group of sialylated glycosphingolipids widely expressed in mammalian tissues. We have shown previously that the expression of 9‐O‐acetyl GD3 is highly correlated with periods of neurite outgrowth in the developing nervous system, and that the advance of dorsal root ganglia growth cones on laminin was halted in presence of an antibody specific for 9‐O‐acetyl GD3. In this work, we examined by immunocytochemistry and confocal microscopy whether this ganglioside is localized in point contacts in neuronal growth cones. We identified point contacts by immunoreactions with proteins, such as vinculin and β1 integrin, known to be associated with these structures in growth cones. Our observations indicate that 9‐O‐acetyl GD3 is specifically associated with vinculin and β1 integrin in point contacts of growth cones, suggesting a possible role for this particular ganglioside in the modulation of these contacts during neurite outgrowth. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 31–37, 2003  相似文献   

17.
GAP-43 mRNA in growth cones is associated with HuD and ribosomes   总被引:3,自引:0,他引:3  
The neuron-specific ELAV/Hu family member, HuD, interacts with and stabilizes GAP-43 mRNA in developing neurons, and leads to increased levels of GAP-43 protein. As GAP-43 protein is enriched in growth cones, it is of interest to determine if HuD and GAP-43 mRNA are associated in developing growth cones. HuD granules in growth cones are found in the central domain that is rich in microtubules and ribosomes, in the peripheral domain with its actin network, and in filopodia. This distribution of HuD granules in growth cones is dependent on actin filaments but not on microtubules. GAP-43 mRNA is localized in granules found in both the central and peripheral domains, but not in filopodia. Ribosomes were extensively colocalized with HuD and GAP-43 mRNA granules in the central domain, consistent with a role in the control of GAP-43 mRNA stability in the growth cone. Together, these results demonstrate that many of the components necessary for GAP-43 mRNA translation/stabilization are present within growth cones.  相似文献   

18.
Members of the ADP‐ribosylation factor (ARF) family of small guanosine triphosphate–binding proteins play an essential role in membrane trafficking which subserves constitutive protein transport along exocytic and endocytic pathways within eukaryotic cell bodies. In growing neurons, membrane trafficking within motile growth cones distant from the cell body underlies the rapid plasmalemmal expansion which subserves axon elongation. We report here that ARF is a constituent of axonal growth cones, and that application of brefeldin A to neurons in culture produces a rapid arrest of axon extension that can be ascribed to inhibition of ARF function in growth cones. Our findings demonstrate a role for ARF in growth cones that is coupled tightly to the rapid growth of neuronal processes characteristic of developmental and regenerative axon elongation, and indicate that ARF participates not only in constitutive membrane traffic within the cell body, but also in membrane dynamics within growing axon endings. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 105–115, 1999  相似文献   

19.
Attractive growth cone turning requires Igf2bp1-dependent local translation of β-actin mRNA in response to external cues in vitro. While in vivo studies have shown that Igf2bp1 is required for cell migration and axon terminal branching, a requirement for Igf2bp1 function during axon outgrowth has not been demonstrated. Using a timelapse assay in the zebrafish retinotectal system, we demonstrate that the β-actin 3’UTR is sufficient to target local translation of the photoconvertible fluorescent protein Kaede in growth cones of pathfinding retinal ganglion cells (RGCs) in vivo. Igf2bp1 knockdown reduced RGC axonal outgrowth and tectal coverage and retinal cell survival. RGC-specific expression of a phosphomimetic Igf2bp1 reduced the density of axonal projections in the optic tract while sparing RGCs, demonstrating for the first time that Igf2bp1 is required during axon outgrowth in vivo. Therefore, regulation of local translation mediated by Igf2bp proteins may be required at all stages of axon development.  相似文献   

20.
Axonogenesis involves a shift from uniform delivery of materials to all neurites to preferential delivery to the putative axon, supporting its more rapid extension. Waves, growth cone‐like structures that propagate down the length of neurites, were shown previously to correlate with neurite growth in dissociated cultured hippocampal neurons. Waves are similar to growth cones in their structure, composition and dynamics. Here, we report that waves form in all undifferentiated neurites, but occur more frequently in the future axon during initial neuronal polarization. Moreover, wave frequency and their impact on neurite growth are altered in neurons treated with stimuli that enhance axonogenesis. Coincident with wave arrival, growth cones enlarge and undergo a marked increase in dynamics. Through their engorgement of filopodia along the neurite shaft, waves can induce de novo neurite branching. Actin in waves maintains much of its cohesiveness during transport whereas actin in nonwave regions of the neurite rapidly diffuses as measured by live cell imaging of photoactivated GFP‐actin and photoconversion of Dendra‐actin. Thus, waves represent an alternative axonal transport mechanism for actin. Waves also occur in neurons in organotypic hippocampal slices where they propagate along neurites in the dentate gyrus and the CA regions and induce branching. Taken together, our results indicate that waves are physiologically relevant and contribute to axon growth and branching via the transport of actin and by increasing growth cone dynamics. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号