首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Biologically active peptides evenly labeled with tritium were used for studying the in vitro and in vivo biodegradation of the peptides. Tritium-labeled peptides with a specific radioactivity of 50–150 Ci/mmol were obtained by high temperature solid phase catalytic isotope exchange (HSCIE) with spillover tritium. The distribution of the isotope label among all amino acid residues of these peptides allows the simultaneous determination of practically all possible products of their enzymatic hydrolysis. The developed analytical method includes extraction of tritium-labeled peptides from organism tissues and chromatographic isolation of individual labeled peptides from the mixture of degradation products. The concentrations of a peptide under study and the products of its biodegradation were calculated from the results of liquid scintillation counting. This approach was used for studying the pathways of biodegradation of the heptapeptide TKPRPGP (Selank) and the tripeptide PGP in blood plasma. The pharmacokinetics of Selank, an anxiolytic peptide, was also studied in brain tissues using the intranasal in vivo administration of this peptide. The concentrations of labeled peptides were determined, and the pentapeptide TKPRP, tripeptide TKP, and dipeptides RP and GP were shown to be the major products of Selank biodegradation. The study of the biodegradation of the heptapeptide MEHFPGP (Semax) in the presence of nerve cells showed that the major products of its biodegradation are the pentapeptide HFPGP and tripeptide PGP. The enkephalinase activity of blood plasma was studied with the use of evenly tritium labeled [Leu]enkephalin. A high inhibitory effect of Semax on blood plasma enkephalinases was shown to arise from its action on aminopeptidases. The method, based on the use of evenly tritium-labeled peptides, allows the determination of peptide concentrations and the activity of enzymes involved in their degradation on a μg scale of biological samples both in vitro and in vivo.  相似文献   

2.
We report on the synthesis, activity testing, docking, and quantum mechanical scoring of novel imidazo[1,2‐c]pyrimidin‐5(6H)‐one scaffold for cyclin‐dependent kinase 2 (CDK2) inhibition. A series of 26 compounds substituted with aromatic moieties at position 8 has been tested in in vitro enzyme assays and shown to inhibit CDK2. 2D structure‐activity relationships have ascertained that small substituents at position 8 (up to the size of naphtyl or methoxyphenyl) generally lead to single‐digit micromolar IC50 values, whereas bigger substituents (substituted biphenyls) decreased the compounds' activities. The binding modes of the compounds obtained using Glide docking have exhibited up to 2 hinge‐region hydrogen bonds to CDK2 and differed in the orientation of the inhibitor core and the placement of the 8‐substituents. Semiempirical quantum mechanics‐based scoring identified probable favourable binding modes, which will serve for future structure‐based design and synthetic optimization of substituents of the heterocyclic core. In summary, we have identified a novel core for CDK2 inhibition and will explore it further to increase the potencies of the compounds and also monitor selectivities against other protein kinases.  相似文献   

3.
Protein phosphatase‐1 and phosphatase‐2A are two ubiquitously expressed enzymes known to catalyze the majority of dephosphorylation reactions on serine and threonine inside cells. They play roles in most cellular processes and are tightly regulated by regulatory subunits in holoenzymes. Their misregulation and malfunction contribute to disease development and progression, such as in cancer, diabetes, viral infections, and neurological as well as heart diseases. Therefore, targeting these phosphatases for therapeutic use would be highly desirable; however, their complex regulation and high conservation of the active site have been major hurdles for selectively targeting them in the past. In the last decade, new approaches have been developed to overcome these hurdles and have strongly revived the field. I will focus here on peptide‐based approaches, which contributed to showing that these phosphatases can be targeted selectively and aided in rethinking the design of selective phosphatase modulators. Finally, I will give a perspective on www.depod.org , the human dephosphorylation database, and how it can aid phosphatase modulator design. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.  相似文献   

4.
Transforming growth factor-alpha (TGF-alpha) is a single chain polypeptide hormone of 50 amino acids that stimulates growth of some human cancer cells via an autocrine mechanism. The domain(s) of TGF-alpha that bind and activate its receptor have not been reported. Hydrophilicity plots of TGF-alpha indicate three discrete sequences that are theoretically exposed on the hormone's surface and thus potentially able to interact with the TGF-alpha receptor. Fragments of TGF-alpha encompassing these hydrophilic domains were prepared by using solid-phase peptide synthesis (SPPS) techniques and purified by use of high performance liquid chromotography (HPLC). Assessment of biological activity of the TGF-alpha fragments indicated that none of the fragments significantly inhibited binding of EGF to the receptor, stimulated DNA synthesis of cells, inhibited EGF-induced DNA synthesis of cells, stimulated growth of cells in soft agar, or induced phosphorylation of the receptor or p35 protein. These results indicate that the receptor binding domain of TGF-alpha is not totally encompassed by any of the separate fragments tested and probably is formed by multiple separate regions of TGF-alpha.  相似文献   

5.
Burendahl S  Nilsson L 《Proteins》2012,80(1):294-306
The liver X receptor, LXRα, is an important regulator of genes involved in metabolism and inflammation. The mechanism of communication between the cofactor peptide and the ligand in the ligand-binding pocket is a crucial and often discussed issue for the nuclear receptors (NRs), but such allosteric signaling pathways are difficult to detect and the transmission mechanism remains elusive. Here, we apply the anisotropic thermal diffusion method to the LXRα with bound coactivator and ligand. We detected a possible communication pathway between the coactivator peptide and the ligand. The signal is transmitted both through the receptor backbone and side chains. A key signaling residue is the first leucine in the cofactor peptide recognition motif LXXLL, which is conserved within the NR cofactors, suggesting a general mechanism for allosteric signaling. Furthermore, we studied the LXR receptor and cofactor molecular interactions in detail using molecular dynamics simulations. The protein-protein interaction patterns in the complexes of nine different cofactor peptides and holo-LXRα were characterized, revealing the importance of the receptor-cofactor charge clamp interaction. Specific, but infrequently occurring interactions were observed toward the cofactor peptide C-terminal residues. Thus, additional specificity between LXRα and its cofactors is likely to be found in molecular interactions outside the cofactor peptide or in other biological factors.  相似文献   

6.
The family of G protein-coupled receptors constitutes about 50% of the therapeutic drug targets used in clinical medicine today, although the mechanisms of ligand binding, activation and signal transduction for G protein-coupled receptors are not yet well defined. This review discusses ongoing research using the photoaffinity scanning method to map the bimolecular interface between class II G protein-coupled receptors and their ligands. Furthermore the available computer model of class II peptide ligand docking into the receptor, based on the positional constraints imposed by the photoaffinity scanning analyses, will be discussed briefly. The ultimate goal of these efforts is to understand the molecular basis of receptor binding and therefore to generate a template for rational drug design.  相似文献   

7.
We report the solid-phase synthesis by the Fmoc strategy of a peptide containing a cysteamide group at its C-terminus. This peptide was subject to further modifications including the linkage of fluorophores, namely lucifer yellow and coumarin respectively, at the C- and/or N-terminals. After incubation with living cultured cells these two probes were localized and it is concluded that the post-synthesis modifications can strongly modify the localization of the peptide.  相似文献   

8.
The endocytosis‐mediating performances of two types of peptide ligands, cell receptor binding peptide (CRBP) and cell membrane penetrating peptide (CMPP), were analyzed and compared using a common carrier of peptide ligands‐human ferritin heavy chain (hFTH) nanoparticle. Twenty‐four copies of a CMPP(human immunodeficiency virus‐derived TAT peptide) and/or a CRBP (peptide ligand with strong and specific affinity for either human integrin(αvβ3) or epidermal growth factor receptor I (EGFR) that is overexpressed on various cancer cells) were genetically presented on the surface of each hFTH nanopariticle. The quantitative level of endocytosis and intracellular localization of fluorescence dye‐labeled CRBP‐ and CMPP‐presenting nanoparticles were estimated in the in vitro cultures of integrin‐ and EGFR‐overexpressing cancer and human dermal fibroblast cells(control). From the cancer cell cultures treated with the CMPP‐ and CRBP‐presenting nanoparticles, it was notable that CRBPs resulted in quantitatively higher level of endocytosis than CMPP (TAT) and successfully transported the nanoparticles to the cytosol of cancer cells depending on concentration and treatment period of time, whereas TAT‐mediated endocytosis localized most of the nanoparticles within endosomal vesicles under the same conditions. These novel findings provide highly useful informations to many researchers both in academia and in industry who are interested in developing anticancer drug delivery systems/carriers.  相似文献   

9.
Two peptide fragments, derived from the head and tail of rabbit muscle myokinase, were found to possess remarkable and specific ligand-binding properties (Hamadaet al., 1979).By initiating systematic syntheses and measurements of equilibrium substrate-binding properties of these two sets of peptides, or portions thereof, which encompass the binding sites for (a) the magnesium complexes of the nucleotide substrates (MgATP2– and MgADP) and (b) the uncomplexed nucleotide substrates (ADP3– and AMP2–) of rabbit muscle myokinase, some of the requirements for binding of the substrates to ATP-AMP transphosphorylase are being deduced and chemically outlined. One requirement for tight nucleotide binding appears to be a minimum peptide length of 15–25 residues. In addition, Lys-172 and/or Lys-194 may be involved in the binding of AMP.The syntheses are described as a set of peptides corresponding to residues 31–45, 20–45, 5–45, and 1–45, and a set of peptides corresponding to residues 178–192, 178–194, and 172–194 of rabbit muscle adenylate kinase. The ligand-binding properties of the first set of synthetic peptides to the fluorescent ligands: MgATP/ATP and MgADP/ADP are quantitatively presented in terms of their intrinsic dissociation constants (Kd) and values ofN (maximal number of moles bound per mole of peptide); and compared with the peptide fragment MT-I (1–44) obtained from rabbit muscle myokinase (Kubyet al., 1984) and with the native enzyme (Hamadaet al., 1979). In addition, the values ofN andKd are given for the second set of synthetic peptides to the fluorescent ligands AMP and ADP as well as for the peptide fragments MT-XII(172–194) and CB-VI(126–194) (Kuby et al., 1984) and, in turn, compared with the native enzyme.A few miscellaneous dissociation constants which had been derived kinetically are also given for comparison (e.g., theK i for AMP and the value of obtained for the native enzyme) (Hamada and Kuby, 1978), and theK'd measured for Cr3+ and the synthetic peptide I1–45 (Fryet al., 1985b).Paper XVII of this series is Kubyet al. (1983).  相似文献   

10.
Leucine-rich repeat receptor kinases (LRR-RKs) are the largest sub-family of transmembrane receptor kinases in plants. In several LRR-RKs, a loop-out region called an 'island domain', which intercepts the extracellular tandem LRRs at a position near the transmembrane domain, constitutes the ligand-binding pocket, but the absence of the island domain in numerous LRR-RKs raises questions about which domain recognizes the ligand in non-island domain LRR-RKs. Here, we used photoaffinity labeling followed by chemical and enzymatic digestion to show that BAM1, a CLV1/BAM-family LRR-RK whose extracellular domain comprises 22 consecutive LRRs, directly interacts with the small peptide ligand CLE9 at the LRR6-LRR8 region that is relatively distal from the transmembrane domain. Multiple sequence alignment and homology modeling revealed that the inner concave side of LRR6-LRR8 of CLV1/BAM-family LRR-RKs deviates slightly from the LRR consensus. In support of our findings, the clv1-4 mutant carries a missense mutation at the inner concave side of LRR6 of CLV1, and introduction of the corresponding mutation in BAM1 resulted in complete loss of ligand binding activity. Our results indicate that the ligand recognition mechanisms of plant LRR-RKs are more complex and diverse than anticipated.  相似文献   

11.
Lipidation with long-chain di-fattyacyl-glycerol moieties was used to anchor gastrin and CCK peptides irreversibly to lipid bilayers. Intervesicular lipopeptide transfer to model phospholipid bilayers is fast and quantitative, leading to a different mode of insertion of lipo-gastrin and lipo-CCK in lipid bilayers. Lipo-gastrin remains exposed to the bulk solvent in a predominantly random coil structure as a consequence of electrostatic repulsion, whereas lipo-CCK exhibits a pronounced tendency to form peptide domains with insertion of its C-terminus into more hydrophobic compartments of the bilayer. Thereby Ca2+ at physiological concentrations favours this aggregational phenomenon. Since both lipo-peptides were found to retain almost full receptor affinity despite their irreversible anchorage to the bilayer, a membrane-bound pathway in the receptor recognition and binding process is indeed possible. According to the data collected in this study, CCK might possibly use this pathway, whereas accumulation of gastrin on the cell membrane with prefolding of the ligand at the water/lipid interface is hardly conceivable. Nevertheless the observed receptor interaction of the deliberately membrane-anchored gastrin offers interesting constraints for computational docking experiments on a modelled CCK-B/gastrin receptor by additionally taking into account information derived from mutagenesis studies. Despite the limitations of such modelling experiments, the resulting picture of the gastrin/receptor complex allowed the visualization and rationalization of the experimental results of the extensive structure–function studies performed previously on this family of gastrointestinal hormones. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Deciphering antibody‐protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein‐protein complexes. We investigated the physicochemical properties of regions on and away from the antibody‐antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody‐protein antigen recognition is entropy driven, with residues having low side‐chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody‐antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody‐antigen interfaces and of Fab domains as compared with nonantibody protein‐protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures.  相似文献   

13.
Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self‐assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO‐binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO‐binding peptide, 125 spot‐synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO‐binding sites were found as 6‐mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles. Biotechnol. Bioeng. 2010;106: 845–851. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
15.
We report a novel chemiluminescence (CL)-based method for assaying the ligand-binding activity of the androgen receptor. The central parts of this method are the utilization of the steroid CL marker as the replacement of the radioactive label in the conventional ligand-binding assay and the determination of the binding activity by the light measurement of the bound CL-label under an H(2)O(2)-microperoxidase system. The properties and reliability of this assay were investigated and verified using genital skin fibroblasts (GSF) from seven normal males. The method is precise (CV < 7% for both B(max) and K(d)) with high correlation coefficients (r > 0.93) in each Scatchard linear regression analysis. This assay can determine the androgen binding properties using only a quarter of the cells (approximately 40 000 cells/data point) of that required by the radiolabelling approach. The utility of the method was illustrated by binding experiment on the GSFs of several patients from a large Chinese family affected with androgen insensitivity syndrome. The familial distinct feature is that all patients shared an identical Arg840Cys substitution in the androgen receptor but displayed high phenotypic variation in disorders of male sexual development. The patients selected for the present study represent a wide spectrum of this phenotypic variation. This study thus provides insights on the pleiotropic effects of the mutation. In conclusion, the CL-based method can serve as an effective, precise and reliable replacement for the radiolabelling approach and has the advantages of simplicity, cost-effectiveness and health and environmental safety over the counterpart.  相似文献   

16.
Allosteric HIV‐1 integrase (IN) inhibitors (ALLINIs) bind at the dimer interface of the IN catalytic core domain (CCD), and potently inhibit HIV‐1 by promoting aberrant, higher‐order IN multimerization. Little is known about the structural organization of the inhibitor‐induced IN multimers and important questions regarding how ALLINIs promote aberrant IN multimerization remain to be answered. On the basis of physical chemistry principles and from our analysis of experimental information, we propose that inhibitor‐induced multimerization is mediated by ALLINIs directly promoting inter‐subunit interactions between the CCD dimer and a C‐terminal domain (CTD) of another IN dimer. Guided by this hypothesis, we have built atomic models of inter‐subunit interfaces in IN multimers by incorporating information from hydrogen‐deuterium exchange (HDX) measurements to drive protein‐protein docking. We have also developed a novel free energy simulation method to estimate the effects of ALLINI binding on the association of the CCD and CTD. Using this structural and thermodynamic modeling approach, we show that multimer inter‐subunit interface models can account for several experimental observations about ALLINI‐induced multimerization, including large differences in the potencies of various ALLINIs, the mechanisms of resistance mutations, and the crucial role of solvent exposed R‐groups in the high potency of certain ALLINIs. Our study predicts that CTD residues Tyr226, Trp235 and Lys266 are involved in the aberrant multimer interfaces. The key finding of the study is that it suggests the possibility of ALLINIs facilitating inter‐subunit interactions between an external CTD and the CCD‐CCD dimer interface.  相似文献   

17.
Two simple lipid A analogues methyl 2,3-di-O-tetradecanoyl-alpha-D-glucopyranoside (GL1) and methyl 2,3-di-O-tetradecanoyl-alpha-D-glucopyranoside 4-O-phosphate (GL2) were synthesized and used for preparing mixed phosphocholine vesicles as models of the outer membrane of gram-negative bacteria. The interaction of these model membranes with magainin 2, a representative of the alpha-helical membrane active peptides, and apidaecin Ib and drosocin, two insect Pro-rich peptides which do not act at the level of the cellular membrane, were studied by CD and dye-releasing experiments. The CD spectra of apidaecin Ib and drosocin in the presence of GL1- or GL2-containing vesicles were consistent with largely unordered structures, whereas, according to the CD spectra, magainin 2 adopted an amphipathic alpha-helical conformation, particularly in the presence of negatively charged bilayers. The ability of the peptides to fold into amphipathic conformations was strictly correlated to their ability to bind and to permeabilize phospholipid as well as glycolipid membranes. Apidaecin Ib and drosocin, which are unable to adopt an amphipathic structure, showed negligible dye-leakage activity even in the presence of GL2-containing vesicles. It is reasonable to suppose that, as for the killing mechanism, the two classes of antimicrobial peptides follow different patterns to cross the bacterial outer membrane.  相似文献   

18.
Candida albicans has emerged as a major public health problem in recent decades. The most important contributing factor is the rapid increase in resistance to conventional drugs worldwide. Synthetic antimicrobial peptides (SAMPs) have attracted substantial attention as alternatives and/or adjuvants in therapeutic treatments due to their strong activity at low concentrations without apparent toxicity. Here, two SAMPs, named Mo‐CBP3‐PepI (CPAIQRCC) and Mo‐CBP3‐PepII (NIQPPCRCC), are described, bioinspired by Mo‐CBP3, which is an antifungal chitin‐binding protein from Moringa oleifera seeds. Furthermore, the mechanism of anticandidal activity was evaluated as well as their synergistic effects with nystatin. Both peptides induced the production of reactive oxygen species (ROS), cell wall degradation, and large pores in the C. albicans cell membrane. In addition, the peptides exhibited high potential as adjuvants because of their synergistic effects, by increasing almost 50‐fold the anticandidal activity of the conventional antifungal drug nystatin. These peptides have excellent potential as new drugs and/or adjuvants to conventional drugs for treatment of clinical infections caused by C. albicans.  相似文献   

19.
Cavasotto CN  Orry AJ  Abagyan RA 《Proteins》2003,51(3):423-433
G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in signal transmission. Drugs associated with GPCRs represent more than one fourth of the 100 top-selling drugs and are the targets of more than half of the current therapeutic agents on the market. Our methodology based on the internal coordinate mechanics (ICM) program can accurately identify the ligand-binding pocket in the currently available crystal structures of seven transmembrane (7TM) proteins [bacteriorhodopsin (BR) and bovine rhodopsin (bRho)]. The binding geometry of the ligand can be accurately predicted by ICM flexible docking with and without the loop regions, a useful finding for GPCR docking because the transmembrane regions are easier to model. We also demonstrate that the native ligand can be identified by flexible docking and scoring in 1.5% and 0.2% (for bRho and BR, respectively) of the best scoring compounds from two different types of compound database. The same procedure can be applied to the database of available chemicals to identify specific GPCR binders. Finally, we demonstrate that even if the sidechain positions in the bRho binding pocket are entirely wrong, their correct conformation can be fully restored with high accuracy (0.28 A) through the ICM global optimization with and without the ligand present. These binding site adjustments are critical for flexible docking of new ligands to known structures or for docking to GPCR homology models. The ICM docking method has the potential to be used to "de-orphanize" orphan GPCRs (oGPCRs) and to identify antagonists-agonists for GPCRs if an accurate model (experimentally and computationally validated) of the structure has been constructed or when future crystal structures are determined.  相似文献   

20.
The opening of ligand-gated ion channels in response to agonist binding is a fundamental process in biology. In ATP-gated P2X receptors, little is known about the molecular events that couple ATP binding to channel opening. In this paper, we identify structural changes of the ATP site accompanying the P2X2 receptor activation by engineering extracellular zinc bridges at putative mobile regions as revealed by normal mode analysis. We provide evidence that tightening of the ATP sites shaped like open 'jaws' induces opening of the P2X ion channel. We show that ATP binding favours jaw tightening, whereas binding of a competitive antagonist prevents gating induced by this movement. Our data reveal the inherent dynamic of the binding jaw, and provide new structural insights into the mechanism of P2X receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号