首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Development of the yolk sac of squamate reptiles (lizards and snakes) differs from other amniote lineages in the pattern of growth of extraembryonic mesoderm, which produces a cavity, the yolk cleft, within the yolk. The structure of the yolk cleft and the accompanying isolated yolk mass influence development of the allantois and chorioallantoic membrane. The yolk cleft of viviparous species of the Eugongylus group of scincid lizards is the foundation for an elaborate yolk sac placenta; development of the yolk cleft of oviparous species has not been studied. We used light microscopy to describe the yolk sac and chorioallantoic membrane in a developmental series of an oviparous member of this species group, Oligosoma lichenigerum. Topology of the extraembryonic membranes of late stage embryos differs from viviparous species as a result of differences in development of the yolk sac. The chorioallantoic membrane encircles the egg of O. lichenigerum but is confined to the embryonic hemisphere of the egg in viviparous species. Early development of the yolk cleft is similar for both modes of parity, but in contrast to viviparous species, the yolk cleft of O. lichenigerum is transformed into a tube‐like structure, which fills with cells. The yolk cleft originates as extraembryonic mesoderm is diverted from the periphery of the egg into the yolk sac cavity. As a result, a bilaminar omphalopleure persists over the abembryonic surface of the yolk. The bilaminar omphalopleure is ultimately displaced by intrusion of allantoic mesoderm between ectodermal and endodermal layers. The resulting chorioallantoic membrane has a similar structure but different developmental history to the chorioallantoic membrane of the embryonic hemisphere of the egg. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The reptilian placenta is a composite structure formed by a functional interaction between extraembryonic membranes and the maternal uterus. Study of placental structure of squamate reptiles over the past century has established that each of the multiple independent origins of placentation, which characterize the reproductive diversity of squamates, has resulted from the evolutionary transformation of these homologous structures. Because each evolutionary transformation is an independent novel relationship between maternal and embryonic tissues, the resulting placentae are not homologous, even though the individual components may be. The evolution of reptilian placentation should reveal much about evolutionary patterns and mechanisms because similar structural-functional systems have been transformed along parallel trajectories on multiple occasions. We compared extraembryonic membrane and placental development and pattern of embryonic nutrition in thamnophiine snakes and Pseudemoia lizards in the context of recent hypotheses of phylogenetic relationships. Two primary types of placentation, chorioallantoic and yolk sac, evolved in each lineage. Smooth, highly vascular regions of chorioallantoic placentation are indistinguishable homoplasies that evolved in parallel, likely to facilitate respiratory exchange. The yolk sac placenta of each lineage is specialized for histotrophic nutrient transfer, yet composition of these structures differs because of variation in the ancestral snakes and lizards. In addition, the omphalopleure that contributes to yolk sac placentation persists to later embryonic stages compared to oviparous outgroups, but the two lineages have evolved different structures that prevent replacement of the omphalopleure by the allantois. Each lineage has also evolved unique structural specializations of the chorioallantoic placenta.  相似文献   

3.
Embryos of oviparous Reptilia (=turtles, lepidosaurs, crocodilians and birds) extract calcium for growth and development from reserves in the yolk and eggshell. Yolk provides most of the calcium to embryos of lizards and snakes. In contrast, the eggshell supplies most of the calcium for embryonic development of turtles, crocodilians and birds. The yolk sac and chorioallantoic membrane of birds recover and transport calcium from the yolk and eggshell and homologous membranes of squamates (lizards and snakes) probably transport calcium from these two sources as well. We studied calcium mobilization by embryos of the snake Pantherophis guttatus during the interval of greatest embryonic growth and found that the pattern of calcium transfer was similar to other snakes. Calcium recovery from the yolk is relatively low until the penultimate embryonic stage. Calcium removal from the eggshell begins during the same embryonic stage and total eggshell calcium drops in each of the final 2 weeks prior to hatching. The eggshell supplies 28% of the calcium of hatchlings. The timing of calcium transport from the yolk and eggshell is coincident with the timing of growth of the yolk sac and chorioallantoic membrane and expression of the calcium binding protein, calbindin-D28K, in these tissues as reported in previous studies. In the context of earlier work, our findings suggest that the timing and mechanism of calcium transport from the yolk sac of P. guttatus is similar to birds, but that both the timing and mechanism of calcium transport by the chorioallantoic membrane differs. Based on the coincident timing of eggshell calcium loss and embryonic calcium accumulation, we also conclude that recovery of eggshell calcium in P. guttatus is regulated by the embryo.  相似文献   

4.
The yolk splanchnopleure and chorioallantoic membrane of oviparous reptiles transport calcium from the yolk and eggshell to the developing embryo. Among oviparous amniotes, the mechanism of calcium mobilization to embryos has been studied only in domestic fowl, in which the mechanism of calcium transport of the yolk splanchnopleure differs from the chorioallantoic membrane. Transport of calcium is facilitated by calbindin-D(28K) in endodermal cells of the yolk splanchnopleure of chickens but the chorioallantoic membrane does not express calbindin-D(28K). We used immunoblotting to assay for calbindin-D(28K) expression in yolk splanchnopleure and chorioallantoic membrane of the corn snake, Elaphe guttata, to test the hypothesis that the mechanism of calcium transport by extraembryonic membranes of snakes is similar to birds. High calbindin-D(28K) expression was detected in samples of yolk splanchnopleure and chorioallantoic membrane during late embryonic stages. We conclude that calbindin-D(28K) is expressed in these extraembryonic membranes to facilitate transport of calcium and that the mechanism of calcium transport of the chorioallantoic membrane of the corn snake differs from that of the chicken. Further, we conclude that calbindin-D(28K) expression is developmentally regulated and increases during later embryonic stages in the corn snake.  相似文献   

5.
《Journal of morphology》2017,278(6):768-779
Non‐avian reptiles commonly are assumed to be like birds in their overall patterns of development. However, colubrid corn snakes (Pantherophis guttatus ) have mechanisms of yolk cellularization and processing that are entirely different from the avian pattern. In birds, a vascular “yolk sac” surrounds and digests the liquid yolk. In contrast, in corn snakes, the yolk material is converted into vascularized cords of yolk‐filled cells. In this study, we used stereomicroscopy, histology, and scanning electron microscopy to analyze this unusual developmental pattern in corn snakes. Our observations reveal that the yolk sac cavity is invaded by endodermal cells that proliferate, absorb yolk spheres, and form aggregates of interconnected cells within the liquid yolk mass. As development proceeds, small blood vessels arise from the yolk sac omphalopleure, penetrate into the yolk mass, and become tightly encased in the endodermal cells. The entire vitellus ultimately becomes converted into a mass of vascularized, “spaghetti‐like” strands of yolk‐laden cells. The resulting arrangement allows yolk to be digested intracellularly and yolk products to be transported to the developing embryo. Indirect evidence for this pattern in other species raises the possibility that it is ancestral for squamates and quite possibly Reptilia in general.  相似文献   

6.
Most reptiles are oviparous, with the developing embryos relying on the contents of the yolk to sustain development until hatching (lecithotrophy). The yolk is composed primarily of lipid and protein, which act as an energy source and the essential components to build embryonic tissue. Nevertheless, yolk and the resulting embryos contain many other nutrients, including inorganic ions, vitamins, carotenoids, water and hormones. Apart from water and oxygen, which may be taken up by eggs, and some inorganic ions that can come from the eggshell or even from outside the egg, everything required by the embryo must be in the egg when it is laid. Approximately 20% of squamate reptiles are viviparous, exhibiting a variety of placental complexities. Species with complex placentae have reduced yolk volumes, with the mother augmenting embryonic nutrition by provision across the placenta (placentotrophy). Despite assumed advantages of placentotrophy, only 5 out of approximately 100 lineages of viviparous squamates exhibit substantial placentotrophy. This paper reviews available and recent information on the yolk contents of a variety of squamate reptiles to ask the question, how are nutrients transported from the yolk to the embryo or across the placenta? Although, current available data suggest that, in broad terms, yolk is taken up by embryos without discrimination of the nutrients, there are some apparent exceptions, including the very long chain polyunsaturated fatty acids. In addition, fundamental differences in the patterns of energy utilisation in lizards and snakes suggest fundamental differences in lipid profiles in these taxa, which appear to reflect the differences between placentotrophic and lecithotrophic viviparous lizards.  相似文献   

7.
Embryos of the direct-developing frog Eleutherodactylus coqui take up small quantities of yolk and yolk mineral early in incubation but increase their uptake of yolk reserves at later stages of development. Growth and accumulation of calcium and magnesium by embryos also occur slowly at first and at a higher rate later. Accumulation of calcium and magnesium by embryos is largely a function of variation in size of embryos, but uptake of phosphorus is unrelated to size. Althrough patterns of growth and uptake of mineral by embryonic coquis resemble those for embryos of oviparous amniotes, embryonic coquis do not deplete the yolk of its nutrients to the same degree. Thus, residual yolk of coqui hatchlings contains a high percentage of the nutrient reserves originally present in the egg. This difference between embryonic coquis and embryos of oviparous amniotes may indicate that transfer of nutrients from yolk to embryo becomes limiting during the grwoth phase. Alternatively, some aspects of the neurologic system are so poorly developed at hatching that coqui may not be able to find prey effectively. A large nutrient reserve could sustain hatchling while the neurologic system continues to mature.  相似文献   

8.
The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes.  相似文献   

9.
10.
The evolution of viviparity alters the physical relationship between mothers and offspring and the prevalence of viviparity among squamate reptiles presents an opportunity to uncover patterns in the evolution of placental structure. Understanding the breadth of this diversity is limited because studies of placental structure and function have emphasized a limited number of lineages. We studied placental ontogeny using light microscopy for an embryological series of the Mexican gerrhonotine lizard, Mesaspis viridiflava. This species develops an elaborate yolk sac placenta, an omphaloplacenta, which receives vascular support arising in a structure known only from other gerrhonotine lizards. A prominent feature of the omphaloplacenta is a zone of uterine and embryonic epithelial cell hyperplasia located at the upper shoulder of the yolk mass, often extending above the yolk mass. The omphaloplacenta covers more than one-half of the surface area of maternal—embryonic contact. The chorioallantoic placenta has a more restricted distribution because the allantois remains in the embryonic hemisphere of the egg throughout development and lies internal to the vascular support for the omphaloplacenta in areas where they overlap. The structural profile of the chorioallantoic placenta indicates a potential for respiratory exchange and/or hemotrophic nutritive transport, while that of the omphaloplacenta suggests that nutritive transfer is primarily via histotrophy. An eggshell is present in the earliest embryonic stages examined but regresses relatively early in development. Placental specializations of this species are consistent with a pattern of matrotrophic embryonic nutrition and have evolved in a unique lineage specific developmental pattern.  相似文献   

11.
12.
Flow regulates arterial-venous differentiation in the chick embryo yolk sac   总被引:9,自引:0,他引:9  
Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1.  相似文献   

13.
14.
The effect of emoxypin on angiogenesis in rabbit cornea in aseptic inflammation induced by intracorneal implantation of a piece of quartz and on the development of the vessels of the chick embryo yolk sac was studied. 1% emoxypin pipetted thrice a day for 10-14 days inhibited corneal neovascularization and reduced the formation of new blood vessels. We observed an inhibitory effect on the development of vascular bed of the embryo yolk sac on incubation hour 64-72. The drug affected neither general growth of the embryos no the number of somites.  相似文献   

15.
16.
For nearly 40 years functional studies of the mouse quaking gene (qkI) have focused on its role in the postnatal central nervous system during myelination. However, the homozygous lethality of a number of ENU-induced alleles reveals that quaking has a critical role in embryonic development prior to the start of myelination. In this article, we show that quaking has a previously unsuspected and essential role in blood vessel development. Interestingly, we found that quaking, a nonsecreted protein, is expressed in the yolk sac endoderm, adjacent to the mesodermal site of developing blood islands, where the differentiation of blood and endothelial cells first occurs. Antibodies against PE-CAM-1, TIE-2 and SM-alpha-actin reveal that embryos homozygous for the qk(k2) allele have defective yolk sac vascular remodeling and abnormal vessels in the embryo proper at midgestation, coinciding with the timing of embryonic death. However, these mutants exhibit normal expression of Nkx2.5 and alpha-sarcomeric actin, indicating that cardiac muscle differentiation was normal. Further, they had normal embryonic heart rates in culture, suggesting that cardiac function was not compromised at this stage of embryonic development. Together, these results suggest that quaking plays an essential role in vascular development and that the blood vessel defects are the cause of embryonic death.  相似文献   

17.
Defective vascular development in connexin 45-deficient mice   总被引:14,自引:0,他引:14  
In order to reveal the biological function(s) of the gap-junction protein connexin 45 (Cx45), we generated Cx45-deficient mice with targeted replacement of the Cx45-coding region with the lacZ reporter gene. Heterozygous Cx45(+/)(-) mice showed strong expression of the reporter gene in vascular and visceral smooth muscle cells. Cx45-deficient embryos exhibited striking abnormalities in vascular development and died between embryonic day (E) 9.5 and 10.5. Differentiation and positioning of endothelial cells appeared to be normal, but subsequent development of blood vessels revealed impaired formation of vascular trees in the yolk sac, impaired allantoic mesenchymal ingrowth and capillary formation in the labyrinthine part of the placenta, and arrest of arterial growth, including a failure to develop a smooth muscle layer surrounding the major arteries of the embryo proper. As a consequence, the hearts of most Cx45-deficient embryos were dilated. The abnormal development of the vasculature in the yolk sac of Cx45(-)(/)(-) embryos could be caused by defective TGFbeta signalling, as the amount of TGF beta1 protein in the epithelial layer of the yolk sac was largely decreased in the E9.5 Cx45(-)(/)(-) embryo, compared with the wild-type embryo. The defective vascular development was accompanied by massive apoptosis, which began in some embryos at E8.5 and was abundant in virtually all tissues of the embryos at E9.5. We conclude that in Cx45(-)(/)(-) embryos, vasculogenesis was normal, but subsequent transformation into mature vessels was interrupted. Development of different types of vessels was impaired to a varying extent, which possibly reflects the complementation by other connexin(s).  相似文献   

18.
Hedgehog is required for murine yolk sac angiogenesis.   总被引:13,自引:0,他引:13  
Blood islands, the precursors of yolk sac blood vessels, contain primitive erythrocytes surrounded by a layer of endothelial cells. These structures differentiate from extra-embryonic mesodermal cells that underlie the visceral endoderm. Our previous studies have shown that Indian hedgehog (Ihh) is expressed in the visceral endoderm both in the visceral yolk sac in vivo and in embryonic stem (ES) cell-derived embryoid bodies. Differentiating embryoid bodies form blood islands, providing an in vitro model for studying vasculogenesis and hematopoiesis. A role for Ihh in yolk sac function is suggested by the observation that roughly 50% of Ihh(-/-) mice die at mid-gestation, potentially owing to vascular defects in the yolk sac. To address the nature of the possible vascular defects, we have examined the ability of ES cells deficient for Ihh or smoothened (Smo), which encodes a receptor component essential for all hedgehog signaling, to form blood islands in vitro. Embryoid bodies derived from these cell lines are unable to form blood islands, and express reduced levels of both PECAM1, an endothelial cell marker, and alpha-SMA, a vascular smooth muscle marker. RT-PCR analysis in the Ihh(-/-) lines shows a substantial decrease in the expression of Flk1 and Tal1, markers for the hemangioblast, the precursor of both blood and endothelial cells, as well as Flt1, an angiogenesis marker. To extend these observations, we have examined the phenotypes of embryo yolk sacs deficient for Ihh or SMO: Whereas Ihh(-/-) yolk sacs can form blood vessels, the vessels are fewer in number and smaller, perhaps owing to their inability to undergo vascular remodeling. Smo(-/-) yolk sacs arrest at an earlier stage: the endothelial tubes are packed with hematopoietic cells, and fail to undergo even the limited vascular remodeling observed in the Ihh(-/-) yolk sacs. Our study supports a role for hedgehog signaling in yolk sac angiogenesis.  相似文献   

19.
Vascular endothelial growth factor A (VEGFA) plays a pivotal role in the first steps of endothelial and haematopoietic development in the yolk sac, as well as in the establishment of the cardiovascular system of the embryo. At the onset of gastrulation, VEGFA is primarily expressed in the yolk sac visceral endoderm and in the yolk sac mesothelium. We report the generation and analysis of a Vegf hypomorphic allele, Vegf(lo). Animals heterozygous for the targeted mutation are viable. Homozygous embryos, however, die at 9.0 dpc because of severe abnormalities in the yolk sac vasculature and deficiencies in the development of the dorsal aortae. We find that providing 'Vegf wild-type' visceral endoderm to the hypomorphic embryos restores normal blood and endothelial differentiation in the yolk sac, but does not rescue the phenotype in the embryo proper. In the opposite situation, however, when Vegf hypomorphic visceral endoderm is provided to a wild-type embryo, the 'Vegf wild-type' yolk sac mesoderm is not sufficient to support proper vessel formation and haematopoietic differentiation in this extra-embryonic membrane. These findings demonstrate that VEGFA expression in the visceral endoderm is absolutely required for the normal expansion and organisation of both the endothelial and haematopoietic lineages in the early sites of vessel and blood formation. However, normal VEGFA expression in the yolk sac mesoderm alone is not sufficient for supporting the proper development of the early vascular and haematopoietic system.  相似文献   

20.
The degree of offspring development at hatching (or birth) varies among species within most major vertebrate lineages; altricial vs. precocial birds offer the clearest example of a trade-off between early hatching and the degree of locomotor development of the hatchling. No such diversity has been reported for reptiles, but we suggest that natural selection may fine-tune the time of hatching (in oviparous species) or birth (in viviparous species) to optimize offspring phenotypes and hence, maximize fitness. This hypothesis predicts enhanced neonatal performance after more prolonged incubation or gestation, within as well as among populations. Both published and original data on Australian scincid lizards support this prediction. In a field study, viviparous alpine skinks (Niveoscincus microlepidotus) that gave birth later in the season had faster-running offspring, that had a higher probability of surviving through the first year of life. The enhanced performance and survival were not secondary results of larger offspring size. After controlling for effects of mean incubation temperature, prolonged development also correlated with enhanced locomotor performance in hatchlings from eggs of an oviparous skink (Bassiana duperreyi) incubated at warm temperatures (> 20 degrees C) but not at cooler temperatures (< 20 degrees C). We suggest that embryonic reptiles control their date of hatching or birth and thus, their stage of development at this critical life-history transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号