首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthocyanin is one of the flavonoid phytopigments that shows strong antioxidant activity. The cyanidin‐3‐O‐glucoside (C3G) is one of the principal types of anthocyanins. To understand the interaction between C3G and bovine serum albumin (BSA), fluorescence spectroscopy, ultraviolet–visible absorption, Fourier transform infrared spectroscopy, circular dichroism and molecular modeling techniques were used. Binding constant (Ka) and the number of binding sites (n) were calculated. The quenching mechanism of fluorescence of BSA by C3G was discussed. The results studied by Fourier transform infrared spectroscopy and circular dichroism experiments indicate that the secondary structures of the protein have been changed by the interaction of C3G with BSA. The result of molecular modeling confirmed that the C3G bound to the site I (sub‐domain IIA) of BSA, and that the hydroxyl groups in the B ring of C3G took part in the binding with BSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The interaction of hydroxyethyl starch 130/0.4 (Voluven) with human serum albumin (HSA) has been investigated by fluorescence (steady state and synchronous), Fourier transforms infrared (FT‐IR), and circular dichroism (CD) spectroscopies. Analysis of the fluorescence quenching data of HSA by Voluven using the Stern–Volmer method revealed the formation of 1:1 ground‐state complex. Evaluation of binding parameters and binding energy indicated that the binding reaction was exothermic. On the basis of fluorescence measurements, it was concluded that electrostatic forces play a crucial role in stabilizing the complex. The binding distance was calculated by using Förster resonance energy transfer (FRET) theory. The conformational changes of HSA were obtained qualitatively as well as quantitatively using synchronous fluorescence, FT‐IR, and CD. The HSA underwent partial unfolding in the presence of Voluven.  相似文献   

5.
The effect of a potent antimicrobial compound bearing 1,2,3‐triazole core and a tryptophan tail, triazole‐tryptophan hybrid (TTH), with bovine serum albumin (BSA) have been explored using various spectroscopic and molecular docking methods. Studies revealed that TTH strongly quenches the intrinsic fluorophore of BSA by a static quenching mechanism. Time‐resolved fluorescence spectra further confirmed the involvement of static quenching for TTH–BSA system. The calculated thermodynamic parameters; ΔH, ΔS, and ΔG showed that the binding process was spontaneous, exothermic and entropy driven. Synchronous fluorescence, three‐dimensional (3D) fluorescence and circular dichroism data revealed that TTH induces the structural alteration in BSA and enhances its stability. In silico study of TTH–BSA system showed that it binds with BSA at the site I of subdomain IIA. Both the experimental and in silico study showed that the hydrophobic and electrostatic interactions play a major role in TTH–BSA binding.  相似文献   

6.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV–vis absorption spectroscopy (UV–vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT‐IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady‐state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >1010 L mol?1 sec?1. This result indicates that the ENPL–BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0), enthalpic change (ΔH 0) and entropic change (ΔS 0). The binding of ENPL with BSA is an enthalpy‐driven process due to |ΔH °| > |T ΔS °| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub‐domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α‐helical secondary structure.  相似文献   

8.
A coordination compound of 5, 7-dihydrox-4'-methoxyisoflavone and selenium was synthesized and its structure was identified by IR, LC-MS and (1)H-NMR. Its biochemical effects were investigated using bovine serum albumin (BSA) as a target protein molecule, in which process three-dimensional (3D) fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra and fluorescence probe techniques were employed. The interaction of SEIF and BSA was discussed by fluorescence quenching method and F?rster non-radiation energy transfer theory. The thermodynamic parameters ΔH (θ), ΔG (θ), ΔS (θ) at different temperatures were calculated according to Van't Hoff isobaric equation and the results indicated the interaction was an exothermic as well as a spontaneous process. The binding site was explored by fluorescence probe method using warfarin and ibuprofen as markers. Intramolecular forces which are responsible for maintaining the binding were mainly hydrogen bond and van der Waals power. The average distance from the tryptophan residue in domain II of BSA (donor) to SEIF (acceptor) is 3.57 nm at body temperature. The conformation changes of BSA were investigated by 3D fluorescence and CD spectra.  相似文献   

9.
Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet–visible spectroscopy, fluorescence spectroscopy and confirmed by three‐dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β‐cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern–Volmer equation. The thermodynamic parameters ?Ho, ?Go, ?So at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non‐radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Cyclam‐based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam‐based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal‐based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV–vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern–Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1‐anilinonaphthalene‐8‐sulphonic acid (1,8‐ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α‐helical content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The interaction of potassium dichromate (Cr(VI)) with bovine serum albumin (BSA) was investigated by fluorescence, synchronous fluorescence, resonance light scattering (RLS), ultraviolet-visible absorption, and circular dichroism (CD) spectroscopies under simulated physiological conditions. The experimental results showed that Cr(VI) could quench the intrinsic fluorescence of BSA following a static quenching process, which indicates the formation of a Cr(VI)-BSA complex. The binding constant (KA) and binding site (n) were measured at different temperatures. The spectroscopic results also revealed that the binding of Cr(VI) to BSA can lead to the loosening of the protein conformation and can change the microenvironment and skeleton of BSA.  相似文献   

12.
A sipholane triterpenoid, named sipholenone A, with anti‐cancer properties was isolated from the Red Sea sponge Siphonochalina siphonella and characterized by proton and carbon‐13 nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopies. The goal of this study was to visualize the binding of this triterpenoid with human serum albumin (HSA) and to determine its binding site on the biomacromolecule. The interaction was visualized using fluorescence quenching, synchronous fluorescence, far‐ and near‐UV circular dichroism (CD), UV–visible and Fourier transform‐infrared (FT‐IR) spectroscopies. UV–visible spectroscopy indicated the formation of a ground‐state complex as a result of the interaction. Sipholenone A quenches the fluorescence of HSA via a static quenching mechanism. A small blue shift in the fluorescence quenching profiles suggested the involvement of hydrophobic forces in the interaction. Sipholenone A binding takes place at site I of subdomain II A with a 1:1 binding ratio, as revealed by displacement binding studies using warfarin, ibuprofen and digitoxin. Far‐UV CD and FT‐IR studies showed that the binding of sipholenone A to HSA also had a small effect on the protein's secondary structure with a slight decrease in the α‐helical content. Several thermodynamic parameters were calculated, along with Forster's radiative energy transfer analysis.  相似文献   

13.
The binding modes of cepharanthine (CEPT) with bovine serum albumin (BSA) and human serum albumin (HSA) have been established by reproducing physiological conditions, which is very important to understand the pharmacokinetics and toxicity of CEPT. These spectral data were further analyzed by the multivariate curve resolution‐alternating least squares method. Moreover, the concentration profiles and pure spectra of three species (BSA/HSA, CEPT and CEPT–BSA/HSA) and the apparent equilibrium constants Kapp were evaluated. The experimental results showed that CEPT could quench the fluorescence intensity of BSA/HSA by a combined quenching (static and dynamic) procedure. The binding constant (K), the thermodynamic parameters (ΔG, ΔH and ΔS) and binding subdomain were measured, and indicated that CEPT could spontaneously bind to BSA/HSA on subdomain IIA through the hydrophobic interactions. The effect of CEPT on the secondary structure of proteins has been analyzed by circular dichroism, 3D fluorescence and Fourier transform infrared spectra. The binding distance between CEPT and tryptophan of BSA/HSA was 2.305/1.749 nm, which is based on the Förster resonance energy transfer theory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A newly synthesized 1, 4‐bis ((4‐((4‐heptylpiperazin‐1‐yl) methyl)‐1H‐1, 2, 3‐triazol‐1‐yl) methyl) benzene from the family of piperazine derivative has good anticancer activity, antibacterial and low toxic nature; its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of piperazine derivative to bovine serum albumin (BSA) was investigated using fluorescence spectroscopy. The molecular distance r between the donor (BSA) and acceptor (piperazine derivative) was estimated according to Forster's theory of nonradiative energy transfer. The physicochemical properties of piperazine derivative, which induced structural changes in BSA, have been studied by circular dichroism and those chemical environmental changes were probed using Raman spectroscopic analysis. Further, the binding dynamics was expounded by synchronous fluorescence spectroscopy and molecular modeling studies explored the hydrophobic interaction and hydrogen bonding results, which stabilize the interaction.  相似文献   

15.
The Schiff base 4‐hydroxy‐benzoic acid (4‐diethylamino‐2‐hydroxy‐benzylidene) hydrazide (SL) was synthesized and characterized. Its antioxidant activity was evaluated using 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) free radical scavenging action. Being a potent antioxidant its binding ability to the transport protein bovine serum albumin (BSA) was studied using fluorescence quenching and circular dichroism (CD) studies. The binding distance has been calculated by fluorescence resonance energy transfer (FRET) to be 1.85 Å and the Stern–Volmer quenching constant has been calculated to be (3.23 ± 0.45) × 105 M–1. Quantum chemical analysis was carried out for the Schiff base using DFT with B3LYP and 6–311G** and related to the experimentally obtained results. For a deeper understanding of the mechanism of the interaction, the experimental data were complemented by protein–Schiff base docking calculations using Argus Lab. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In the present investigation, the protein‐binding properties of naphthyl‐based hydroxamic acids (HAs), N‐1‐naphthyllaurohydroxamic acid ( 1 ) and N‐1‐naphthyl‐p‐methylbenzohydroxamic acid ( 2 ) were studied using bovine serum albumin (BSA) and UV–visible spectroscopy, fluorescence spectroscopy, diffuse reflectance spectroscopy–Fourier transform infrared (DRS–FTIR), circular dichroism (CD), and cyclic voltammetry along with computational approaches, i.e. molecular docking. Alteration in the antioxidant activities of compound 1 and compound 2 during interaction with BSA was also studied. From the fluorescence studies, thermodynamic parameters such as Gibb's free energy (ΔG), entropy change (ΔS) and enthalpy change (ΔH) were calculated at five different temperatures (viz., 298, 303, 308, 313 or 318 K) for the HAs–BSA interaction. The results suggested that the binding process was enthalpy driven with dominating hydrogen bonds and van der Waals’ interactions for both compounds. Warfarin (WF) and ibuprofen (IB) were used for competitive site‐specific marker binding interaction and revealed that compound 1 and compound 2 were located in subdomain IIA (Sudlow's site I) on the BSA molecule. Conclusions based on above‐applied techniques signify that various non‐covalent forces were involved during the HAs–BSA interaction. Therefore the resulted HAs–BSA interaction manifested its effect in transportation, distribution and metabolism for the drug in the blood circulation system, therefore establishing HAs as a drug‐like molecule.  相似文献   

17.
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The interaction of Ce(3+) to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by Ce(3+) was a static quenching process, the binding constant is 6.70 × 10(5) , and the number of binding site is 1. The thermodynamic parameters (ΔH = -29.94 kJ mol(-1) , ΔG = -32.38 kJ mol(-1) , and ΔS = 8.05 J mol(-1) K(-1) ) indicate that electrostatic effect between the protein and the Ce(3+) is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of Ce(3+) changed the conformation of BSA.  相似文献   

19.
The interaction of triazole substituted 4‐methyl‐7‐hydroxycoumarin derivatives (CUM1‐4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet‐visible (UV‐Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol?1. CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.  相似文献   

20.
The human serum albumin (HSA) interaction of a mixed‐ligand copper compound (1) with an imidazole and taurine Schiff base derived from salicylaldehyde and taurine was investigated using fluorescence spectroscopy, UV–vis spectroscopy, time‐resolved fluorescence spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT‐IR) spectroscopy and a molecular docking technique. The results of fluorescence and time‐resolved fluorescence spectroscopy indicated that 1 can effectively quench the HSA fluorescence by a static mechanism. Binding constants (K) and the number of binding sites (n ≈ 1) were calculated using modified Stern–Volmer equations. The thermodynamic parameters were calculated. UV–vis, CD and FT‐IR spectroscopy measurements confirm the alterations in the HSA secondary structure induced by 1. The site marker competitive experiment confirms that 1 is located in subdomain IB of HSA. The combination of molecular docking results and fluorescence experimental results reveal that hydrophobic interaction and hydrogen bonds are the predominant intermolecular forces stabilizing the 1–HSA complex. The 1–HSA complex increases approximately three times its cytotoxicity in cancer cells but has no effect on normal cells in vitro. Compared with unbound 1, the 1–HSA complex promotes HepG2 cells apoptosis and also has a stronger capacity for cell cycle arrest at the S phase of HepG2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号