首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG) granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9%) and 1 month (26.9%) after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7%) in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.  相似文献   

2.
A well-developed spatial memory is important for many animals, but appears especially important for scatter-hoarding species. Consequently, the scatter-hoarding system provides an excellent paradigm in which to study the integrative aspects of memory use within an ecological and evolutionary framework. One of the main tenets of this paradigm is that selection for enhanced spatial memory for cache locations should specialize the brain areas involved in memory. One such brain area is the hippocampus (Hp). Many studies have examined this adaptive specialization hypothesis, typically relating spatial memory to Hp volume. However, it is unclear how the volume of the Hp is related to its function for spatial memory. Thus, the goal of this article is to evaluate volume as a main measurement of the degree of morphological and physiological adaptation of the Hp as it relates to memory. We will briefly review the evidence for the specialization of memory in food-hoarding animals and discuss the philosophy behind volume as the main currency. We will then examine the problems associated with this approach, attempting to understand the advantages and limitations of using volume and discuss alternatives that might yield more specific hypotheses. Overall, there is strong evidence that the Hp is involved in the specialization of spatial memory in scatter-hoarding animals. However, volume may be only a coarse proxy for more relevant and subtle changes in the structure of the brain underlying changes in behaviour. To better understand the nature of this brain/memory relationship, we suggest focusing on more specific and relevant features of the Hp, such as the number or size of neurons, variation in connectivity depending on dendritic and axonal arborization and the number of synapses. These should generate more specific hypotheses derived from a solid theoretical background and should provide a better understanding of both neural mechanisms of memory and their evolution.  相似文献   

3.
The process of weaning programs the neurobehavioral development and therefore provides a critical formative period for adult behavior. However, the neural substrates underlying these behavioral changes are largely unknown. To test the hypothesis that during childhood neuronal networks in the prefrontal cortex are reorganized in response to the timing and extent of social interactions, we analyzed the length, ramification, and spine density of apical and basal dendrites of layer II/III pyramidal neurons in four groups of male rats. (1) Early weaning at postnatal day (PND) 21 + postweaning social rearing (EWS), (2) late weaning at PND 30 + postweaning social rearing (LWS), (3) early weaning + postweaning social isolation (EWI), (4) late weaning + postweaning social isolation (LWI). Compared with late weaned animals, the early weaned animals displayed elevated spine densities on apical and basal dendrites only in the anterior cingulate (ACd), but not in the orbitofrontal cortex (OFC), irrespective of the postweaning housing conditions. For dendritic length and complexity an interaction between the factors weaning and postweaning rearing conditions was observed. In the ACd the EWI animals had longer and more complex apical dendrites compared with all other groups, whereas in the OFC the EWI animals displayed a significant reduction of apical dendritic length and complexity compared with the EWS group. Taken together, our findings show that the timing as well as the amount of social contact with family members significantly affects the refinement of prefrontal cortical synaptic networks, which are essential for emotional and cognitive behavior.  相似文献   

4.
There is substantial evidence implicating N-methyl-D-aspartate receptors (NMDARs) in memory and cognition. It has also been suggested that NMDAR hypofunction might underlie the cognitive deficits observed in schizophrenia as morphological changes, including alterations in the dendritic architecture of pyramidal neurons in the prefrontal cortex (PFC), have been reported in the schizophrenic brain post mortem. Here, we used a genetic model of NMDAR hypofunction, a serine racemase knockout (SR-/-) mouse in which the first coding exon of the mouse SR gene has been deleted, to explore the role of D-serine in regulating cognitive functions as well as dendritic architecture. SR-/- mice exhibited a significantly disrupted representation of the order of events in distinct experiences as showed by object recognition and odor sequence tests; however, SR-/- animals were unimpaired in the detection of novel objects and in spatial displacement, and showed intact relational memory in a test of transitive inference. In addition, SR-/- mice exhibited normal sociability and preference for social novelty. Neurons in the medial PFC of SR-/- mice displayed reductions in the complexity, total length and spine density of apical dendrites. These findings show that D-serine is important for specific aspects of cognition, as well as in regulating dendritic morphology of pyramidal neurons in the medial PFC (mPFC). Moreover, they suggest that NMDAR hypofunction might, in part, be responsible for the cognitive deficits and synaptic changes associated with schizophrenia, and highlight this signaling pathway as a potential target for therapeutic intervention.  相似文献   

5.
Hippocampal function, including spatial cognition and stress responses, matures during adolescence. In addition, hippocampal neuron structure is modified by gonadal steroid hormones, which increase dramatically at this time. This study investigated pubertal changes in dendritic complexity of dentate gyrus neurons. Dendrites, spines, and cell bodies of Golgi-impregnated neurons from the granule cell layer were traced in pre-, mid-, and late-pubertal male Syrian hamsters (21, 35, and 49 days of age). Sholl analysis determined the number of intersections and total dendritic length contained in concentric spheres set at 25-microm increments from the soma. Spine densities were quantified separately in proximal and distal segments of a subset of neurons used for the Sholl analysis. We found that the structure of neurons in the lower, but not upper, blade of the dentate gyrus changed during adolescence. The lower, infrapyramidal blade showed pruning of dendrites close to the cell body and increases in distal dendritic spine densities across adolescence. These data demonstrate that dentate gyrus neurons undergo substantial structural remodeling during adolescence and that patterns of maturation are region specific. Furthermore, these changes in dendrite structure, which alter the electrophysiological properties of granule cells, are likely related to the adolescent development of hippocampal-dependent cognitive functions such as learning and memory, as well as hippocampus-mediated stress responsivity.  相似文献   

6.
β-Carbolines (BCs) belong to the heterogenous family of carbolines, which have been found exogenously, that is, in various fruits, meats, tobacco smoke, alcohol and coffee, but also endogenously, that is, blood, brain and CSF. These exogenous and endogenous BCs and some of their metabolites can exert neurotoxic effects, however, an unexpected stimulatory effect of 9-methyl-β-carboline (9-me-BC) on dopaminergic neurons in primary mesencephalic cultures was recently discovered. The aim of the present study was to extend our knowledge on the stimulatory effects of 9-me-BC and to test the hypothesis that 9-me-BC may act as a cognitive enhancer. We found that 10 days (but not 5 days) of pharmacological treatment with 9-me-BC (i) improves spatial learning in the radial maze, (ii) elevates dopamine levels in the hippocampal formation, and (iii) results after 10 days of treatment in elongated, more complex dendritic trees and higher spine numbers on granule neurons in the dentate gyrus of 9-me-BC-treated rats. Our results demonstrate that beyond its neuroprotective/neurorestorative and anti-inflammatory effects, 9-me-BC acts as a cognitive enhancer in a hippocampus-dependent task, and that the behavioral effects may be associated with a stimulatory impact on hippocampal dopamine levels and dendritic and synaptic proliferation.  相似文献   

7.
Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N-methyl-d-aspartate (NMDA) receptors and adenosine A1 receptors in the generation of dendritic NMDA spikes and plateau potentials in basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. We found that NR2C/D glutamate receptor subunits contribute to the amplitude of synaptically evoked NMDA spikes. Dendritic calcium signals associated with glutamate-evoked dendritic plateau potentials were significantly shortened upon application of the NR2C/D receptor antagonist PPDA, suggesting that NR2C/D receptors prolong the duration of calcium influx during dendritic spiking. In contrast to NR2C/D receptors, adenosine A1 receptors act to abbreviate dendritic and somatic signals via the activation of dendritic K+ current. This current is characterized as a slow-activating outward-rectifying voltage- and adenosine-gated current, insensitive to 4-aminopyridine but sensitive to TEA. Our data support the hypothesis that the release of glutamate and ATP from neurons or glia contribute to initiation, maintenance and termination of local dendritic glutamate-mediated regenerative potentials.  相似文献   

8.
Dendrites and the dendritic spines of neurons play key roles in the connectivity of the brain and have been recognized as the locus of long-term synaptic plasticity,which is correlated with learning and memory.The development of dendrites and spines in the mammalian central nervous system is a complex process that requires specific molecular events over a period of time.It has been shown that specific molecules are needed not only at the spine's point of contact,but also at a distance,providing signals that initiate a cascade of events leading to synapse formation.The specific molecules that act to signal neuronal differentiation,dendritic morphology,and synaptogenesis are tightly regulated by genetic and epigenetic programs.It has been shown that the dendritic spine structure and distribution are altered in many diseases,including many forms of mental retardation(MR),and can also be potentiated by neuronal activities and an enriched environment.Because dendritic spine pathologies are found in many types of MR,it has been proposed that an inability to form normal spines leads to the cognitive and motor deficits that are characteristic of MR.Epigenetic mechanisms,including DNA methylation,chromatin remodeling,and the noncoding RNA-mediated process,have profound regulatory roles in mammalian gene expression.The study of epigenetics focuses on cellular effects that result in a heritable pattern of gene expression without changes to genomic encoding.Despite extensive efforts to understand the molecular regulation of dendrite and spine development,epigenetic mechanisms have only recently been considered.In this review,we will focus on epigenetic mechanisms that regulate the development and maturation of dendrites and spines.We will discuss how epigenetic alterations could result in spine abnormalities that lead to MR,such as is seen in fragile X and Rett syndromes.We will also discuss both general methodology and recent technological advances in the study of neuronal dendrites and spines.  相似文献   

9.
Dendritic spines are small protrusions emerging from their parent dendrites, and their morphological changes are involved in synaptic plasticity. These tiny structures are composed of thousands of different proteins belonging to several subfamilies such as membrane receptors, scaffold proteins, signal transduction proteins, and cytoskeletal proteins. Actin filaments in dendritic spines consist of double helix of actin protomers decorated with drebrin and ADF/cofilin, and the balance of the two is closely related to the actin dynamics, which may govern morphological and functional synaptic plasticity. During development, the accumulation of drebrin‐binding type actin filaments is one of the initial events occurring at the nascent excitatory postsynaptic site, and plays a pivotal role in spine formation as well as small GTPases. It has been recently reported that microtubules transiently appear in dendritic spines in correlation with synaptic activity. Interestingly, it is suggested that microtubule dynamics might couple with actin dynamics. In this review, we will summarize the contribution of both actin filaments and microtubules to the formation and regulation of dendritic spines, and further discuss the role of cytoskeletal deregulation in neurological disorders.  相似文献   

10.
11.
Dendritic spines serve as the post‐synaptic structural component of synapses. The structure and function of dendritic spines are dynamically regulated by a number of signaling pathways and allow for normal neural processing, whereas aberrant spine changes are thought to contribute to cognitive impairment in neuropsychiatric and neurodegenerative disorders. However, spine changes within different brain regions and their contribution to specific cognitive functions, especially later in adulthood, is not well understood. In this study, we used late‐adult KALRN‐deficient mice as a tool to investigate the vulnerability of different cognitive functions to long‐term perturbations in spine plasticity in different forebrain regions. We found that in these mice, loss of one or both copies of KALRN lead to genotype and brain region‐dependent reductions in spine density. Surprisingly, heterozygote and knockout mice showed differential impairments in cognitive phenotypes, including working memory, social recognition, and social approach. Correlation analysis between the site and magnitude of spine loss and behavioral alterations suggests that the interplay between brain regions is critical for complex cognitive processing and underscores the importance of spine plasticity in normal cognitive function. Long‐term perturbation of spine plasticity results in distinct impairments of cognitive function. Using genetically modified mice deficient in a central regulator of spine plasticity, we investigated the brain region‐specific contribution of spine numbers to various cognitive functions. We found distinct cognitive functions display differential sensitivity to spine loss in the cortex and hippocampus. Our data support spines as neuronal structures important for cognition and suggest interplay between brain regions is critical for complex cognitive processing.  相似文献   

12.
13.
The uropygial gland is an organ exclusive of birds that secretes an oily substance, the uropygial secretion, the functions of which are still debated. One of the proposed hypothesis is its possible action against chewing lice (order Phthiraptera), a group of avian ectoparasites that feed on feathers, causing different types of harm. However, this hypothesis lacks support. The present study analyses the relationship between uropygial gland size and the number of feather holes (which is correlated with the load of chewing lice) in the house sparrow Passer domesticus. Moreover, the relationship between the uropygial gland size and different aspects of sparrow health (body condition, immunocompetence and haematocrit), as well as sexually selected traits in males (badge and wingbar size), is tested. The results show a negative correlation between uropygial gland size and number of feather holes, a result found both years of the study. This result supports the hypothesis that uropygial secretion is used against chewing lice. Uropygial gland size also correlated positively with body condition (residuals of body mass relative to tarsus length) and immunocompetence, being therefore related to bird health. After a year in captivity, with resources provided ad libitum, no correlation was found between individual uropygial gland size and body condition or haematocrit, perhaps because the negative effect that chewing lice exert on bird health was offset by captivity conditions. Uropygial gland size was not correlated with badge size, but it was correlated with wingbar size, which furthermore supports the contention that this sexually selected signal acts as an indicator of lice resistance in the house sparrow. In summary, this study supports the idea of a positive relationship between uropygial gland and bird health in the house sparrow, the gland secretion affording resistance against chewing lice.  相似文献   

14.
Chronic placental insufficiency (CPI), a known cause of intrauterine growth restriction, can lead to structural alterations in the developing brain that might underlie postnatal neurological deficits. We have previously demonstrated significant reductions in the volumes of hippocampal neuropil layers in fetal guinea pig brains following experimentally induced growth restriction. To determine the components of the neuropil affected in the brains of growth restricted (GR) fetuses, the dendritic morphology of CA1 pyramidal neurons and dentate granule cells was examined. CPI was induced by unilateral uterine artery ligation in pregnant guinea pigs at midgestation (term approximately 67 days). Hippocampi from control and GR fetuses were stained using the Rapid Golgi technique and the growth and branching of the dendritic arbors were quantified using the Sholl method. In addition, the density of dendritic spines was determined on the apical arbors of each population. In GR brains (n = 7) compared to controls (n = 7), there was a reduction in dendritic elongation (p < 0.005) and an alteration in the branch point distribution in CA1 basal arbors, and a reduction both in the outgrowth (p < 0.05) and branch point number (p < 0.05) of CA1 apical arbors. Dentate granule cells from GR brains also demonstrated reduced dendritic outgrowth (p < 0.05). There was an increase in dendritic spine density in both neuronal populations; this might be due either to altered synaptic pruning or as a compensatory mechanism for reduced dendritic length. These findings demonstrate that a chronic prenatal insult causes selective changes in the morphology of hippocampal cell dendrites and may lead to alterations in hippocampal function in the postnatal period.  相似文献   

15.
Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old adults. Strength of functional connectivity between spatial components was assessed for age group differences and related to speeded task performance. We then assessed whether age-related differences in global brain volume were associated with age-related differences in functional network connectivity. Both age groups used a series of spatial components during the verbal working memory task and the strength and distribution of functional network connectivity between these components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the old adults was associated with decreases in functional network connectivity between components comprised of the supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex. Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-related alterations in functional network connectivity were the result of global brain volume changes. These results suggest that age-related differences in the coordination of neural activity between brain regions partially underlie differences in cognitive performance.  相似文献   

16.
Selection for enhanced cognitive traits is hypothesized to produce enhancements to brain structures that support those traits. Although numerous studies suggest that this pattern is robust, there are several mechanisms that may produce this association. First, cognitive traits and their neural underpinnings may be fixed as a result of differential selection on cognitive function within specific environments. Second, these relationships may be the product of the selection for plasticity, where differences are produced owing to an individual's experiences in the environment. Alternatively, the relationship may be a complex function of experience, genetics and/or epigenetic effects. Using a well-studied model species (black-capped chickadee, Poecile atricapillus), we have for the first time, to our knowledge, addressed these hypotheses. We found that differences in hippocampal (Hp) neuron number, neurogenesis and spatial memory previously observed in wild chickadees persisted in hand-raised birds from the same populations, even when birds were raised in an identical environment. These findings reject the hypothesis that variation in these traits is owing solely to differences in memory-based experiences in different environments. Moreover, neuron number and neurogenesis were strikingly similar between captive-raised and wild birds from the same populations, further supporting the genetic hypothesis. Hp volume, however, did not differ between the captive-raised populations, yet was very different in their wild counterparts, supporting the experience hypothesis. Our results indicate that the production of some Hp factors may be inherited and largely independent of environmental experiences in adult life, regardless of their magnitude, in animals under high selection pressure for memory, while traits such as volume may be more plastic and modified by the environment.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neuropathy associated with the degeneration of spinal and brainstem motor neurons. Although ALS is essentially considered as a lower motor neuron disease, prefrontal cortex atrophy underlying executive function deficits have been extensively reported in ALS patients. Here, we examine whether prefrontal cortex neuronal abnormalities and related cognitive impairments are present in presymptomatic G93A Cu/Zn superoxide dismutase mice, a mouse model for familial ALS. Structural characteristics of prelimbic/infralimbic (PL/IL) medial prefrontal cortex (mPFC) neurons were studied in 3-month-old G93A and wild-type mice with the Golgi–Cox method, while mPFC-related cognitive operations were assessed using the conditioned fear extinction paradigm. Sholl analysis performed on the dendritic material showed a reduction in dendrite length and branch nodes on basal dendrites of PL/IL neurons in G93A mice. Spine density was also decreased on basal dendrite segments of branch order five. Consistent with the altered morphology of PL/IL cortical regions, G93A mice showed impaired extinction of conditioned fear. Our findings indicate that abnormal prefrontal cortex connectivity and function are appreciable before the onset of motor disturbances in this model.  相似文献   

18.
19.
Computational modeling of dendritic morphology is a powerful tool for quantitatively describing complex geometrical relationships, uncovering principles of dendritic development, and synthesizing virtual neurons to systematically investigate cellular biophysics and network dynamics. A feature common to many morphological models is a dependence of the branching probability on local diameter. Previous models of this type have been able to recreate a wide variety of dendritic morphologies. However, these diameter-dependent models have so far failed to properly constrain branching when applied to hippocampal CA1 pyramidal cells, leading to explosive growth. Here we present a simple modification of this basic approach, in which all parameter sampling, not just bifurcation probability, depends on branch diameter. This added constraint prevents explosive growth in both apical and basal trees of simulated CA1 neurons, yielding arborizations with average numbers and patterns of bifurcations extremely close to those observed in real cells. However, simulated apical trees are much more varied in size than the corresponding real dendrites. We show that, in this model, the excessive variability of simulated trees is a direct consequence of the natural variability of diameter changes at and between bifurcations observed in apical, but not basal, dendrites. Conversely, some aspects of branch distribution were better matched by virtual apical trees than by virtual basal trees. Dendritic morphometrics related to spatial position, such as path distance from the soma or branch order, may be necessary to fully constrain CA1 apical tree size and basal branching pattern.  相似文献   

20.
Cisternal stacks are induced during hypoxia, which may be associated with intracellular Ca2+ regulation. Although neurons are divided internally in different compartments, little is known about regional differences in cisternal stack formation. We investigated the effects of hypoxic hypoxia and later reoxygenation on cisternal stack formation and other ultrastructual changes in the proximal dendrite, dendritic spine, and cell body of cerebellar Purkinje cells in rats. After brief hypoxic events, cisternal stacks appeared predominantly in the proximal dendrites and after longer hypoxic events in dendritic spines and cell body. Following reoxygenation, cisternal stacks disappeared first in the cell body, followed by the dendritic spines, then the proximal dendrites. These results showed that stack formation occurred at different degrees and time courses among the three regions, and the effect was reversible, which suggests that these compartments are differentially sensitive to hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号