首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. SEM studies of 21 species of marine bryozoans demonstrated that the abfrontal side of the tentacles bears a row of mono- or multiciliated cells, which are presumably sensory. In stenolaemates, the abfrontal cells, as well as the cells at the tentacle tips and the laterofrontal cells, are monociliated. In the 17 gymnolaemate species studied, each tentacle tip bears at least 3 multiciliated cells, each with a tuft of 5–7 stiff cilia of various lengths. On the abfrontal tentacle surface, mono- and multiciliated cells alternate, but all species studied have multiciliated cells at the base and the tip of each tentacle. In live animals, single cilia perform occasional flicks, whereas the tufts of 7–15 cilia on the multiciliated cells are immotile. Length and number of abfrontal cilia vary between species. Two types of multiciliated, putative sensory organs were found on the introvert of some gymnolaemates. One has an apical knob surrounded by a ring of cilia; the other has an apical tuft of cilia. The ultrastructure of the sensory cells of tentacles and introvert was studied in Rhamphostomella ovata . Our observations on both fixed and living material all suggest that these cells are primitive mechanoreceptors. The few species lacking ciliary structures on the introvert have long proximal ciliary tufts on the abfrontal tentacle surface.  相似文献   

2.
Based on morphological evidence, Bryozoa together with Phoronida and Brachiopoda are traditionally combined in the group Lophophorata, although this view has been recently challenged by molecular studies. The core of the concept lies in the presence of the lophophore as well as the nature and arrangement of the body cavities. Bryozoa are the least known in this respect. Here, we focused on the fine structure of the body cavity in 12 bryozoan species: 6 gymnolaemates, 3 stenolaemates and 3 phylactolaemates. In gymnolaemates, the complete epithelial lining of the body cavity is restricted to the lophophore, gut walls, and tentacle sheath. By contrast, the cystid walls are composed only of the ectocyst-producing epidermis without a coelothelium, or an underlying extracellular matrix; only the storage cells and cells of the funicular system contact the epidermis. The nature of the main body cavity in gymnolaemates is unique and may be considered as a secondarily modified coelom. In cyclostomes, both the lophophoral and endosaccal cavities are completely lined with coelothelium, while the exosaccal cavity only has the epidermis along the cystid wall. In gymnolaemates, the lophophore and trunk cavities are divided by an incomplete septum and communicate through two pores. In cyclostomes, the septum has a similar location, but no openings. In Phylactolaemata, the body cavity is undivided: the lophophore and trunk coeloms merge at the bases of the lophophore arms, the epistome cavity joins the trunk, and the forked canal opens into the arm coelom. The coelomic lining of the body is complete except for the epistome, lophophoral arms, and the basal portions of the tentacles, where the cells do not interlock perfectly (this design probably facilitates the ammonia excretion). The observed partitioning of the body cavity in bryozoans differs from that in phoronids and brachiopods, and contradicts the Lophophorata concept.  相似文献   

3.
4.
Bryozoans are impressively active suspension feeders, with diverse feeding behaviors. These have been studied extensively in marine bryozoans, but less so in their freshwater counterparts. Here we identified 16 distinct behaviors in three phylactolaemate species and classified them into behaviors involving separate tentacles, groups of tentacles, lophophore arms, the introvert, or multiple zooids. We examined (1) the repertoire of behaviors in each species, and each behavior's (2) absolute frequency, (3) relative frequency and (4) duration in each of the three species, at two flow velocities (0 and 0.2 cm s?1). Nine feeding behaviors were shared by all three species, but the occurrence of other behaviors in a given species was limited by its morphology. Behaviors involved in particle capture were the most frequent, and were often faster than the reactions involved in particle rejection. By contrast, the absolute frequency of behaviors varied widely among species without clear associations with species form, or function of the behavior. Flow velocity had only minor effects on the feeding behaviors exhibited by a species, or their frequencies or durations. Our results show that phylactolaemates have the same key feeding behaviors of the individual polypides (especially involving separate tentacles) as previously described in gymnolaemate and stenolaemate bryozoans, although their behaviors tend to be carried out more slowly than those of stenolaemates or gymnolaemates. Feeding behaviors involving multiple zooids were nearly absent in the studied phylactolaemates, but are common in gymnolaemates. Freshwater bryozoans appear to be intermediate between stenolaemate and gymnolaemate bryozoans in terms of richness of the repertoire of feeding behaviors.  相似文献   

5.
Molecular techniques are currently the leading tools for reconstructing phylogenetic relationships, but our understanding of ancestral, plesiomorphic and apomorphic characters requires the study of the morphology of extant forms for testing these phylogenies and for reconstructing character evolution. This review highlights the potential of soft body morphology for inferring the evolution and phylogeny of the lophotrochozoan phylum Bryozoa. This colonial taxon comprises aquatic coelomate filter‐feeders that dominate many benthic communities, both marine and freshwater. Despite having a similar bauplan, bryozoans are morphologically highly diverse and are represented by three major taxa: Phylactolaemata, Stenolaemata and Gymnolaemata. Recent molecular studies resulted in a comprehensive phylogenetic tree with the Phylactolaemata sister to the remaining two taxa, and Stenolaemata (Cyclostomata) sister to Gymnolaemata. We plotted data of soft tissue morphology onto this phylogeny in order to gain further insights into the origin of morphological novelties and character evolution in the phylum. All three larger clades have morphological apomorphies assignable to the latest molecular phylogeny. Stenolaemata (Cyclostomata) and Gymnolaemata were united as monophyletic Myolaemata because of the apomorphic myoepithelial and triradiate pharynx. One of the main evolutionary changes in bryozoans is a change from a body wall with two well‐developed muscular layers and numerous retractor muscles in Phylactolaemata to a body wall with few specialized muscles and few retractors in the remaining bryozoans. Such a shift probably pre‐dated a body wall calcification that evolved independently at least twice in Bryozoa and resulted in the evolution of various hydrostatic mechanisms for polypide protrusion. In Cyclostomata, body wall calcification was accompanied by a unique detachment of the peritoneum from the epidermis to form the hydrostatic membraneous sac. The digestive tract of the Myolaemata differs from the phylactolaemate condition by a distinct ciliated pylorus not present in phylactolaemates. All bryozoans have a mesodermal funiculus, which is duplicated in Gymnolaemata. A colonial system of integration (CSI) of additional, sometimes branching, funicular cords connecting neighbouring zooids via pores with pore‐cell complexes evolved at least twice in Gymnolaemata. The nervous system in all bryozoans is subepithelial and concentrated at the lophophoral base and the tentacles. Tentacular nerves emerge intertentacularly in Phylactolaemata whereas they partially emanate directly from the cerebral ganglion or the circum‐oral nerve ring in myolaemates. Overall, morphological evidence shows that ancestral forms were small, colonial coelomates with a muscular body wall and a U‐shaped gut with ciliary tentacle crown, and were capable of asexual budding. Coloniality resulted in many novelties including the origin of zooidal polymorphism, an apomorphic landmark trait of the Myolaemata.  相似文献   

6.
Abstract. In contrast to marine bryozoans, the lophophore structure and the ciliary filter‐feeding mechanism in freshwater bryozoans have so far been only poorly described. Specimens of the phylactolaemate bryozoan Plumatella repens were studied to clarify the tentacular ciliary structures and the particle capture mechanism. Scanning electron microscopy revealed that the tentacles of the lophophore have a frontal band of densely packed cilia, and on each side a zigzag row of laterofrontal cilia and a band of lateral cilia. Phalloidin‐linked fluorescent dye showed no sign of muscular tissue within the tentacles. Video microscopy was used to describe basic characteristics of particle capture. Suspended particles in the incoming water flow, set up by the lateral ‘pump’ cilia on the tentacles, approach the tentacles with a velocity of 1–2 mm s‐1. Near the tentacles, the particles are stopped by the stiff sensory laterofrontal cilia acting as a mechanical sieve, as previously seen in marine bryozoans. The particle capture mechanism suggested is based on the assumed ability of the sensory stiff laterofrontal cilia to be triggered by the deflection caused by the drag force of the through‐flowing water on a captured food particle. Thus, when a particle is stopped by the laterofrontal cilia, the otherwise stiff cilia are presumably triggered to make an inward flick which brings the restrained particle back into the downward directed main current, possibly to be captured again further down in the lophophore before being carried to the mouth via the food groove. No tentacle flicks and no transport of captured particles on the frontal side of the tentacles were observed. The velocity of the metachronal wave of the water‐pumping lateral cilia was measured to be ~0.2 mm s‐1, the wavelength was ~7 μm, and hence the ciliary beat frequency estimated to be ~30 Hz (~20 °C). The filter feeding process in P. repens reported here resembles the ciliary sieving process described for marine bryozoans in recent years, although no tentacle flicks were observed in P. repens. The phylogenetic position of the phylactolaemates is discussed in the light of these findings.  相似文献   

7.
Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.  相似文献   

8.
The epidermis of the tentacles of Phoronis australis consists of six cell types: supporting cells, choanocyte-like sensory cells, both types monociliated, secretory A-cells with a mucous secretion, and three kinds of B-cells with mucoprotein secretions. On cross-sections of the tentacle, one can distinguish four faces: the frontal one, heavily ciliated and located between the two frontolateral rows of sensory cells, the lateral and the abfrontal ones. The orientation of the basal structures of the cilia is related to the direction of their beat. The basiepidermal nervous system is grouped mainly at the frontal and abfrontal faces. The basement membrane is thickest on the frontal face and consists of circular collagen fibrils near the epidermis and longitudinal ones near the peritoneum. All peritoneal cells surrounding the mesocoel are provided with smooth longitudinal myofibrils, and isolated axons are situated between these cells and the basement membrane. The wall of the single blood capillary in each tentacle consists of epitheliomuscular cells with circular myofilaments, lying on a thin internal basal lamina; there is no endothelium.  相似文献   

9.
Riisgård, H.U., Okamura, B. and Funch, P. 2009. Particle capture in ciliary filter‐feeding gymnolaemate and phylactolaemate bryozoans – a comparative study. —Acta Zoologica (Stockholm) 91 : 416–425. We studied particle capture using video‐microscopy in two gymnolaemates, the marine cheilostome Electra pilosa and the freshwater ctenostome Paludicella articulata, and three phylactolaemates, Fredericella sultana with a circular funnel‐shaped lophophore, and Cristatella mucedo and Lophophus crystallinus, both with a horseshoe‐shaped lophophore. The video‐microscope observations along with studies of lophophore morphology and ultrastructure indicated that phylactolaemate and gymnolaemate bryozoans with a diversity of lophophore shapes rely on the same basic structures and mechanisms for particle capture. Our study also demonstrates that essential features of the particle capture process resemble one another in bryozoans, brachiopods and phoronids.  相似文献   

10.
Summary The fine structure of the tentacles of the articulate brachiopod Terebratalia transversa has been studied by light and electron microscopy. The epidermis consists of a simple epithelium that is ciliated in frontal and paired latero-frontal or latero-abfrontal longitudinal tracts. Bundles of unsheathed nerve fibers extend longitudinally between the bases of the frontal epidermal cells and appear to end on the connective tissue cylinder; no myoneural junctions were found. The acellular connective tissue cylinder in each tentacle is composed of orthogonal arrays of collagen fibrils embedded in an amorphous matrix. Baffles of parallel crimped collagen fibrils traverse the connective tissue cylinder in regions where it buckles during flexion of the tentacle.The tentacular peritoneum consists of four cell types: 1) common peritoneal cells that line the lateral walls of the coelomic canal, 2) striated and 3) smooth myoepithelial cells that extend along the frontal and abfrontal sides of the coelomic canal, and 4) squamous smooth myoepithelial cells that comprise the tentacular blood channel.Experimental manipulations of a tentacle indicate that its movements are effected by the interaction of the tentacular contractile apparatus and the resilience of the supportive connective tissue cylinder. The frontal contractile bundle is composed of a central group of striated fibers and two lateral groups of smooth fibers which function to flex the tentacle and to hold it down, respectively. The small abfrontal group of smooth myoepithelial cells effects the re-extension of the tentacle, in conjunction with the passive resiliency of the connective tissue cylinder and the concomitant relaxation of the frontal contractile bundle.The authors wish to express their appreciation to Professor Robert L. Fernald for his advice and encouragement throughout the course of this study. Some of the work was conducted at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows, for use of the facilities. Part of this study was supported by NIH Developmental Biology Training Grant No. 5-T01-HD00266 and NSF grant BMS 7507689  相似文献   

11.
Brachiopoda is a relict group of invertebrate filter feeders that used a tentacle organ, lophophore, for capturing food particles from the water column. Brachiopod extinction apparently occurred due to low productivity of their filtering organ in comparison with more advanced filter-feeders. Investigation of the filtering mechanism of modern brachiopods is essential to understanding their evolutionary fate. This study is devoted to the rejection mechanism of large waste particles from the plectolophous lophophore of brachiopod Coptothyris grayi. The waste particles gather inside of the lophophore on the outer side of the brachial fold. The particles form rows along frontal grooves of outer tentacles and are carried successively to the tentacle tips and move along them, slimed by mucus. One portion of the particles comes off the lophophore and falls down the mantle, while another part is carried to the abfrontal surface of the tentacles. Due to repeated reversals of abfrontal cilia, the particles wavily move along the abfrontal surface of tentacles. Such movement contributes to the secretion of mucus and the formation of particle clots. The clots come off the lophophore and fall down the mantle. The particles are transported along the mantle by cilia to the anterior part of the mantle margin. Here the ciliary reversals that facilitate secretion of mucus and formation of pseudofeces also take place. The latter takes away from the mantle cavity. Thus, only outer tentacles participate in the rejection of large waste particles from the lophophore. Ciliary reversals of the abfrontal surface of tentacles and the mantle are discovered in brachiopods for the first time. This facilitates the additional secretion of mucus and formation of pseudofeces, easing their exit from the mantle cavity. The results contribute to the knowledge of lophophore function and evolution of tentacle organs in Bilateria.  相似文献   

12.
Abstract. Ciliary filter-feeding structures of gymnolaemate bryozoans—adults of Flustrellidra hispida and Alcyonidium gelatinosum , larvae of Membranipora sp.—were studied with SEM. In F. hispida and A. gelatinosum , the distal part of each tentacle has a straight row of stiff laterofrontal cilia which carry out "ciliary sieving" to capture suspended food particles that are subsequently transported downward towards the mouth by tentacle flicking; both structure and function resemble those of stenolaemate tentacles. The proximal part of the tentacle and of the ciliary ridge of a cyphonautes larva have strikingly similar structures, except that the laterofrontal cells are monociliate in the adults and biciliate in the larvae. The laterofrontal cells of the tentacles are arranged in a zigzag row and their cilia form two parallel rows, a frontal and a lateral row. The latter probably forms the sieve of stiff filter cilia in front of the water-pumping lateral cilia, whereas the frontal row appears to be held close to the frontal ciliary band of the tentacle. The biciliate laterofrontal cells of the cyphonautes larva have the cilia arranged in similar rows. The detailed morphological similarities between the ciliary bands of adult and larval filtering structures suggest that the feeding mechanisms are similar, contrary to what has been previously thought.  相似文献   

13.
14.
Most species of freshwater bryozoans (Ectoprocta: Phylactolaemata) have few morphological distinctions, and within phylactolaemates, the morphology of the statoblast has been used to determine evolutionary relationships. Here, two controversial phylogenies have been proposed for phylactolaemates with regard to the relationship of Lophopodidae to other families. Two plumatellid genera, Gelatinella and Hyalinella , are candidates for the ancestral type of lophopodids. In addition, the coexistence of spines on the surfaces of the statoblast has led to the suggestion that lophopodids are closely related to the family Cristatellidae. In this study, we analysed mitochondrial DNA sequences of the 12S and 16S rDNA genes of 10 phylactolaemate species. Our results suggest that plumatellids may not be a direct ancestral group of lophopodids and that cristatellids are not a sister group of lophopodids. Fredericella , which was previously thought to be an ancestral group, was revealed to be derived. In addition, our results suggest that Stephanella is the most basal phylactolaemate. Mapping morphological characteristics onto the sequence-based phylogenetic tree revealed convergent evolution of statoblast characters.  相似文献   

15.
The phylogenetic position of the Ectoprocta within the Lophotrochozoa is discussed controversially. For gaining more insight into ectoproct relationships and comparing it with other potentially related phyla, we analysed the myoanatomy and serotonergic nervous system of adult representatives of the Phylactolaemata (Plumatella emarginata, Plumatellavaihiriae, Plumatella fungosa, Fredericella sultana). The bodywall contains a mesh of circular and longitudinal muscles. On its distal end, the orifice possesses a prominent sphincter and continues into the vestibular wall, which has longitudinal and circular musculature. The tentacle sheath carries mostly longitudinal muscle fibres in Plumatella sp., whereas F. sultana also possesses regular circular muscle fibres. Three groups of muscles are associated with the lophophore: 1) Lophophoral arm muscles (missing in Fredericella), 2) epistome musculature and 3) tentacle musculature. The epistome flap is encompassed by smooth muscle fibres. A few fibres extend medially over the ganglion to its proximal floor. Abfrontal tentacle muscles have diagonally arranged muscle fibres in their proximal region, whereas the distal region is formed by a stack of muscles that resemble an inverted ‘V’. Frontal tentacle muscles show more variation and either possess one or two bases. The digestive tract possesses circular musculature which is striated except at the intestine where it is composed of smooth muscle fibres. The serotonergic nervous system is concentrated in the cerebral ganglion. From the latter a serotonergic nerve extends to each tentacle base. In Plumatella the inner row of tentacles at the lophophoral concavity lacks serotonergic nerves. Bodywall musculature is a common feature in many lophotrochozoan phyla, but among other filter feeders like the Ectoprocta is only present in the ‘lophophorate’ Phoronida. The longitudinal tentacle musculature is reminiscent of the condition found in phoronids and brachiopods, but differs to entoproct tentacles. Although this study shows some support for the ‘Lophophorata’, more comparative analyses of possibly related phyla are required. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
The number of tentacles per unit of body volume decreases with increasing body size in the Bryozoa. The ranges of zooid sizes and of tentacle numbers of the Phylactolaemata do considerably overlap with those of the Gymnolaemata s. l., but only the phylactolaemes form horseshoe-shaped lophophores. Therefore, the lophophore form in the Bryozoa does not simply depend on body sizes but on differences in the genomes in the two sub-classes. A lining-in of similar or similar seeming external shapes of zooids has no persuasive power unless it is combined with convincing arguments concerning the accompanying emendations of the internal anatomy. Economizations and attained degrees of functional effectivity provide main guide-lines for the argumentation and for testing the probability of discussed cases of evolutionary branching during attempts to reconstruct alterations of the internal anatomy. Recapitulative arrangements may play an important role in this context. Statistics on “phens” cannot help to solve these problems. Comparison of the forms of the body bending, of the modes of ontogenetioal displacement of the polypide, and of the arrangements of the body musculature in combination supports the interpretation that the Stenostomata and the Eurystomata have a common root with primarily erect, uncalcified forms and thus most probably are a monophyletic group of Gymnolaemata s. l. originating in phylactolaeme like ancestors. Omitting the Phylactolaemata (as a linking group with many plesiomorph features) in attempts to reconstruct the bryozoan evolution drastically increases the amount of morphological differences between the Gymnolaemata s. l. and the Phoronidae, which are commonly accepted to have pre-served the most morphological characteristics of the bryozoan ancestors. It must be warned of an overestimation of the possible role of the fossil record for the reconstruction of the bryozoan phylogeny, which strongly demands the aids by investigations also on Recent species.  相似文献   

17.
苔藓动物18S rRNA基因的分子系统发生初探   总被引:4,自引:0,他引:4  
本文对我国沿海较为常见的8种唇口目苔藓动物的18SrRNA基因进行了PCR扩增和序列测定。结合已知的其它苔藓动物(包括内肛动物和外肛动物)以及腕足动物和帚虫的相应序列,运用分子系统学方法,研究苔藓动物门的系统发生关系,结果表明,外肛动物和内肛动物构成苔藓动物分子系统树中的二大平行支;本文测定的大室膜孔苔虫与Giribet等测定的膜孔苔虫在系统树中的位置间隔较远。结果也支持外肛动物包含被唇纲和裸唇纲两大类群的形态划分,而关于裸唇纲特别是唇口目内部的系统发生关系。分子数据的分析结果和形态分类之间的分歧有待于进一步研究。  相似文献   

18.
Evolutionary relationships among members of the Lophophorata remain unclear. Traditionally, the Lophophorata included three phyla: Brachiopoda, Bryozoa or Ectoprocta, and Phoronida. All species in these phyla have a lophophore, which is regarded as a homologous structure of the lophophorates. Because the organization of the nervous system has been traditionally used to establish relationships among groups of animals, information on the organization of the nervous system in the lophophore of phoronids, brachiopods, and bryozoans may help clarify relationships among the lophophorates. In the current study, the innervation of the lophophore of the inarticulate brachiopod Lingula anatina is investigated by modern methods. The lophophore of L. anatina contains three brachial nerves: the main, accessory, and lower brachial nerves. The main brachial nerve is located at the base of the dorsal side of the brachial fold and gives rise to the cross neurite bundles, which pass through the connective tissue and connect the main and accessory brachial nerves. Nerves emanating from the accessory brachial nerve account for most of the tentacle innervation and comprise the frontal, latero-frontal, and latero-abfrontal neurite bundles. The lower brachial nerve gives rise to the abfrontal neurite bundles of the outer tentacles. Comparative analysis revealed the presence of many similar features in the organization of the lophophore nervous system in phoronids, brachiopods, and bryozoans. The main brachial nerve of L. anatina is similar to the dorsal ganglion of phoronids and the cerebral ganglion of bryozoans. The accessory brachial nerve of L. anatina is similar to the minor nerve ring of phoronids and the circumoral nerve ring of bryozoans. All lophophorates have intertentacular neurite bundles, which innervate adjacent tentacles. The presence of similar nerve elements in the lophophore of phoronids, brachiopods, and bryozoans supports the homology of the lophophore and the monophyly of the lophophorates.  相似文献   

19.
Although only a small fraction of the estimated 6000 extant bryozoan species has been analysed in a molecular phylogenetic context, the resultant trees have increased our understanding of the interrelationships between major bryozoan groups, as well as between bryozoans and other metazoan phyla. Molecular systematic analyses have failed to recover the Lophophorata as a monophyletic clade until recently, when phylogenomic data placed the Brachiopoda as sister to a clade formed by Phoronida + Bryozoa. Among bryozoans, class Phylactolaemata has been shown to be the sister group of Gymnolaemata + Stenolaemata, corroborating earlier anatomical inferences. Despite persistent claims, there are no unequivocal bryozoans of Cambrian age: the oldest bryozoans are stenolaemates from the Tremadocian of China. Stenolaemates underwent a major radiation during the Ordovician, but the relationships between the six orders involved are poorly understood, mostly because the simple and plastic skeletons of stenolaemates make phylogenetic analyses difficult. Bryozoans were hard‐hit by the mass extinction/s in the late Permian and it was not until the Middle Jurassic that they began to rediversify, initially through the cyclostome stenolaemates. The most successful post‐Palaeozoic order (Cheilostomata) evolved a calcareous skeleton de novo from a soft‐bodied ancestor in the Late Jurassic, maintained a low diversity until the mid‐Cretaceous and then began to radiate explosively. A remarkable range of morphological structures in the form of highly modified zooidal polymorphs, or non‐zooidal or intrazooidal modular elements, is postulated to have evolved repeatedly in this group. Crucially, many of these structures have been linked to micropredator protection and can be interpreted as key traits linked to the diversification of cheilostomes.  相似文献   

20.

Introduction

Comparatively few data are available concerning the structure of the adult nervous system in the Ectoprocta or Bryozoa. In contrast to all other ectoprocts, the cerebral ganglion of phylactolaemates contains a central fluid-filled lumen surrounded by a neuroepithelium. Preliminary observations have shown a small lumen within the cerebral ganglion of the ctenostome Paludicella articulata. Ctenostome-grade ectoprocts are of phylogenetic relevance since they are considered to have retained ancestral ectoproct features. Therefore, the ctenostome Paludicella articulata was analyzed in order to contribute to the basal neural bauplan of ctenostomes and the Ectoprocta in general.

Results

The presence of a lumen and a neuroepithelial organization of the nerve cells within the cerebral ganglion are confirmed. Four tentacle nerves project from the cerebral ganglion into each tentacle. Three of the tentacle nerves (one abfrontal and two latero-frontal nerves) have an intertentacular origin, whereas the medio-frontal nerve arises from the cerebral ganglion. Six to eight visceral nerves and four tentacle sheath nerves are found to emanate from the cerebral ganglion and innervate the digestive tract and the tentacle sheath, respectively.

Conclusions

The situation in P. articulata corresponds to the situation found in other ctenostomes and supports the notion that four tentacle nerves are the ancestral configuration in Ectoprocta and not six as proposed earlier. The presence of a lumen in the ganglion represents the ancestral state in Ectoprocta which disappears during ontogeny in all except in adult Phylactolaemata and P. articulata. It appears likely that it has been overlooked in earlier studies owing to its small size.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号