首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ailanthus altissima has a long history of invasion in urban areas and is currently spreading into suburban and rural areas in the eastern U.S. The objectives of our study were to (1) determine whether A. altissima seed dispersal distance differed between populations on the edges of open fields and intact deciduous forest, and (2) determine whether dispersal differed for north and south winds. We also assessed the relationship between seed characteristics and distance from source populations in fields and forests, and whether seeds disperse at different rates throughout the dispersal season. Using two fields, two intact forest stands, and one partially harvested stand, we sampled the seed rain at 10 m intervals 100 m into each site from October to April 2002–2003. We compared seed density in field and intact forests using a three-way ANOVA with distance from source, wind direction, and environmental structure as independent variables. To assess the accuracy of common empirical dispersal models, mean seed density data at each site were fitted with alternative regression models. We found that mean seed dispersal distance depended on environmental structure and wind direction, a result driven in large part by dispersal at a single site where seed density did not decline with distance. The two alternative regression models fit each site’s dispersal curve equally well. More seeds were dispersed early than in mid- or late-season. Large, heavy seeds traveled as far as small light seeds. Turbulent winds appear to be necessary for seed release, as indicated by a wind tunnel experiment. A. altissima is able to disperse long distances into fields and into mature forests, and can reach canopy gaps and other suitable habitats at least 100 m from the forest edge. It is an effective disperser and can spread rapidly in fragmented landscapes where edges and other high light environments occur. These conditions are increasingly common throughout the eastern U.S. and in other temperate regions worldwide.  相似文献   

2.
Pollen dispersal is a critical process that shapes genetic diversity in natural populations of plants. Estimating the pollen dispersal curve can provide insight into the evolutionary dynamics of populations and is essential background for making predictions about changes induced by perturbations. Specifically, we would like to know whether the dispersal curve is exponential, thin-tailed (decreasing faster than exponential), or fat-tailed (decreasing slower than the exponential). In the latter case, rare events of long-distance dispersal will be much more likely. Here we generalize the previously developed TWOGENER method, assuming that the pollen dispersal curve belongs to particular one- or two-parameter families of dispersal curves and estimating simultaneously the parameters of the dispersal curve and the effective density of reproducing individuals in the population. We tested this method on simulated data, using an exponential power distribution, under thin-tailed, exponential and fat-tailed conditions. We find that even if our estimates show some bias and large mean squared error (MSE), we are able to estimate correctly the general trend of the curve - thin-tailed or fat-tailed - and the effective density. Moreover, the mean distance of dispersal can be correctly estimated with low bias and MSE, even if another family of dispersal curve is used for the estimation. Finally, we consider three case studies based on forest tree species. We find that dispersal is fat-tailed in all cases, and that the effective density estimated by our model is below the measured density in two of the cases. This latter result may reflect the difficulty of estimating two parameters, or it may be a biological consequence of variance in reproductive success of males in the population. Both the simulated and empirical findings demonstrate the strong potential of TWOGENER for evaluating the shape of the dispersal curve and the effective density of the population (d(e)).  相似文献   

3.
 In part 1 an experiment was described for determining the extent of pollen dispersal from a Lolium source. The results were used to test Bateman’s pollen dispersal equations, which were found to be not particularly useful for describing variation in pollen deposition with distance. An improvement is suggested here which takes the influence of wind direction into account. For 11 of the 12 datasets the new equations fit significantly better than the original ones. Mean wind directions were used to produce 15 data subsets for testing Bateman’s equations for dispersal downwind of a pollen source. These equations fitted only 4 of the data subsets, all of which were collected from traps facing towards the pollen source. The usefulness of the model equations in estimating the importance of turbulence is brought into question. It is shown that models incorporating only distance and wind direction do not accurately describe pollen deposition. The amount of pollen deposited does not always decrease smoothly with increasing distance from the source. The variation in the amount of pollen deposited is probably influenced by several factors, including wind speed and turbulence. Received: 5 June 1996 / Accepted: 11 October 1996  相似文献   

4.
Seed dispersal is a critical but poorly understood life-history stage of plants. Here we use a genetic approach to describe seed dispersal patterns accurately in a natural population of the Neotropical tree species Jacaranda copaia (Bignoniaceae). We used microsatellite genotypes from maternally derived tissue on the diaspore to identify which individual of all possible adult trees in the population was the true source of a given seed collected after it dispersed. Wind-dispersed seeds were captured in two different years in a large array of seed traps in an 84-ha mapped area of tropical forest on Barro Colorado Island, Panama. We were particularly interested in the proportion of seeds that traveled long distances and whether there was evidence for direct dispersal into gaps, which are required for successful recruitment of this pioneer tree species. Maximum likelihood procedures were used to fit single- and multiple-component dispersal kernels to the distance data. Mixture models, with separate distributions near and far, best fit the observed dispersal distances, albeit with considerable uncertainty in the tail. We discuss the results in light of different mechanisms responsible for separate distributions near the adult source and in the tail of the curve.  相似文献   

5.
种子的长距离风传播模型研究进展   总被引:15,自引:1,他引:15       下载免费PDF全文
 植物种子的长距离传播在物种迁移、生物入侵、保护生物学等领域有重要的生态和进化意义。种子传播有很多方式,开阔草原等地区的草本植物和许多热带和温带的树木都是通过风传播种子的。风传播的方式最适合进行种子长距离传播现象的模拟研究。种子的风传播模型是传播生态研究的一个重要领域,尤其是种子的长距离风传播模型,对于外来入侵植物的扩散和破碎化景观中植物种群的基因交流等生态过程研究举足轻重,然而国内鲜见这方面的研究成果。本文综述了种子长距离风传播现象研究的背景和意义,分析了风传播种子模型的基本形式和构成原理,并分别就现象模型和机理模型的相关研究进展进行了总结,同时指出了未来发展的几个重要方向。种子的风传播模型可以分为现象模型和机理模型两类,现象模型按种子传播核心的形式包括短尾模型、偏峰长尾模型和混合传播核心模型,后两者对于长距离传播数据的模拟可以取得很好的效果。机理模型按照模拟机制可分为欧拉对流扩散模型和拉格郎日随机模型两类。本文重点介绍了种子的长距离风传播现象的形成机理和两类机理模型的参数构成和处理方式。适合种子脱落的天气和适合传播的天气的同步性可能是形成种子长距离风传播的一个重要前提,林缘和地表存在的上升气流及大风和暴风中形成的速度梯度都可能对于种子的长距离传播有重要的作用。机理模型的操作因子主要包括生物方面的因子、气象方面的因子和地形方面的因子。同时对目前几个应用比较成功的机理模型进行了简要的介绍和评价,包括倾斜羽毛模型、对流-扩散-下降模型、无掩蔽模型、背景模型、WINDISPER及其改进模型和PAPPUS模型。最后指出,目前在风传播种子的长距离模型研究中,对草本植物种子的传播模拟的投入明显不如树木种子的长距离传播模拟,对于破碎化景观中种子长距离的风传播的研究还存在很大的差距,而对提高机理模型预测能力的高分辨率物理环境数据输入技术的需求则为多学科交叉提供了很好的机会。  相似文献   

6.
宋楠  李新蓉  狄林楠 《生态学报》2019,39(7):2462-2469
裸果木(Gymnocarpos przewalskii)是亚洲中部荒漠区少有的第三纪孑遗物种,由于气候变化及人为干扰,其自然种群分布范围不断缩小。种子扩散作为植物生活史过程中的重要阶段,不仅对物种生存及其多样性至关重要,还影响物种分布范围和局部丰度。2015年和2016年分别在新疆哈密地区,采用布设种子收集器的方法,对其自然种群种子扩散的时空动态进行了定点连续观测。结果表明:该物种于当年6月上旬开始扩散,2015年略早于2016年。每年种子扩散持续时间约两个月,扩散趋势为单峰曲线,且呈集中大量扩散的模式,扩散高峰期与当年初次月降水高峰期吻合;在顺风的正南和东南方向上,种子扩散密度大且距离远;种子扩散主要集中在母株冠幅下,随着距母株距离的增加,种子扩散密度减少,二者间存在极显著的负相关性(P0.01),由于裸果木枝条繁多,对风力强度起到了一定的阻碍作用,可能是造成种子集中扩散在母株下的原因。裸果木种子扩散受外界环境(降水、风向)和自身因素等方面的影响,当种子在大量降水前完成扩散,将有利于种子在适宜的微生境萌发,是对多风、干旱的恶劣生境的一种长期适应。  相似文献   

7.
The dispersal ability of plants is a major factor driving ecological responses to global change. In wind‐dispersed plant species, non‐random seed release in relation to wind speeds has been identified as a major determinant of dispersal distances. However, little information is available about the costs and benefits of non‐random abscission and the consequences of timing for dispersal distances. We asked: 1) to what extent is non‐random abscission able to promote long‐distance dispersal and what is the effect of potentially increased pre‐dispersal risk costs? 2) Which meteorological factors and respective timescales are important for maximizing dispersal? These questions were addressed by combining a mechanistic modelling approach and field data collection for herbaceous wind‐dispersed species. Model optimization with a dynamic dispersal approach using measured hourly wind speed showed that plants can increase long‐distance dispersal by developing a hard wind speed threshold below which no seeds are released. At the same time, increased risk costs limit the possibilities for dispersal distance gain and reduce the optimum level of the wind speed threshold, in our case (under representative Dutch meteorological conditions) to a threshold of 5–6 m s–1. The frequency and predictability (auto‐correlation in time) of pre‐dispersal seed‐loss had a major impact on optimal non‐random abscission functions and resulting dispersal distances. We observed a similar, but more gradual, bias towards higher wind speeds in six out of seven wind‐dispersed species under natural conditions. This confirmed that non‐random abscission exists in many species and that, under local Dutch meteorological conditions, abscission was biased towards winds exceeding 5–6 m s–1. We conclude that timing of seed release can vastly enhance dispersal distances in wind‐dispersed species, but increased risk costs may greatly limit the benefits of selecting wind conditions for long‐distance dispersal, leading to moderate seed abscission thresholds, depending on local meteorological conditions and disturbances.  相似文献   

8.
Based on the survey sampling far from the parent plants, the quantitative analysis on seed dispersal of Hordeum brevisubulatum (Trin.)Link on alkalized meadow in the Songnen Plain of China on six orientations was conducted. The results showed that due to the effect of wind direction, the greatest number of seeds disposed was in the northeast, which was 4 times more than the smallest number in the South west. The mean radius of the seed dispersal was about 130 cm. All seed disposal patterns per unit area in different orientations fit, more or less, well with the weibull distribution. It refected that seed dispersal of the with barley provided the character of extending, far from the parent plants, their potential space niche under the natural conditions at the Songnen Plain. The number of seeds dispersed by sequence centrifugation far from the parent plants increased following a Logistic curve relevant to the expansion of accumulated unit area. The rates of increase were relatively lower in the east and northeast where seed disporsal was greater and the distance was farther from the parent plants.  相似文献   

9.
Summary Studies of pollen dispersal in insect-pollinated plants have often documented highly leptokurtic patterns of pollen deposition that can increase the likelihood of long-distance mating. To examine potential causes of highly leptokurtic deposition, we introduce four functions that arise when (1) the duration of pollinator visits to pollen sources is limited, (2) the rate of pollen deposition varies randomly among pollinators and/or among visits, (3) the rate of pollen deposition changes monotonically over time or (4) pollen is carried in layers or compartments on the pollinator's body that differ in deposition rate. Maximum likelihood techniques were used to fit deposition functions to data obtained from honey bees (Apis mellifera L.) visiting mustard plants (Brassica campestris L.) that contained a marker gene. Each of the alternative leptokurtic functions fit the experimental data better than a simple exponential function and the best-fit function predicted a mean pollen dispersal distance more than three times greater than the exponential. We argue that studies of pollen deposition need to test a broader range of deposition models to assess outcrossing distance in plant populations accurately.  相似文献   

10.
Dispersal distance as a benefit of myrmecochory   总被引:13,自引:5,他引:8  
A. N. Andersen 《Oecologia》1988,75(4):507-511
Summary Nutrient-enrichment and predator avoidance are generally considered the major benefits of myrmecochory, but this is apparently not so in Australia where some of the greatest known concentrations of myrmecochorus plants occur. Here I demonstrate that distance dispersal is a potential benefit of myrmecochory in the Australian environment. Although mean dispersal distance at a site in southeastern Australia was only 2.1 m, the dispersal curve was characterised by a narrow peak and long tail. A dispersal curve of this shape has been shown by Green (1983) to be optimal when safe sites for seedling establishment are rare, as is typically the case for Australian myrmecochores in the absence of fire. Both mean disperal distance and shape of the dispersal curve are influenced strongly by nest density and dispersion, population size, and territoriality of seed-dispersing ants. I argue that distance dispersal is likely to be a benefit of myrmecochory throughout Australia, independent of any targeting of seeds to ant nests.  相似文献   

11.
We used species‐specific spore traps to measure airborne dispersal of the wood decay fungus Phlebia centrifuga (spore size 6.5–9 × 2.5–3 μm) up to 1000 m distance from a point source. We fitted two simple dispersal models, an empirical power law model and a semi‐mechanistic diffusion model to the data using the Bayesian approach. The diffusion model provided a better fit than the power law model which underestimated deposition at 3–55 m and overestimated deposition at longer and shorter distances. Model fit improved by allowing overdispersion, suggesting that spores are not dispersed independently but wind can transport spores in groups inside discrete air packages up to considerable distances. Using the fitted diffusion model and available information on the establishment rates of wood‐decay fungi, we examine the distance up to which colonisation from a single fruit body is likely to occur. We conclude that the diluting effect of distance and low establishment success make the occurrence of P. centrifuga dispersal limited possibly already at the distance of tens of metres and very probably at a few hundred metres from the nearest fruit body, despite the fact that under favourable conditions a high proportion of the spores can disperse considerably further. This conclusion is likely to hold generally for those fungal species that inhabit fragmented landscapes, have specialised resource and habitat requirements, and have similar spore size and other dispersal traits as P. centrifuga.  相似文献   

12.
13.
松嫩平原碱化草甸野大麦的种子散布格局   总被引:7,自引:0,他引:7  
根据顺序远离母株的取样调查,定量地分析了松嫩平原碱化草甸野大麦(Hordeum bre-visubulatum (Trin.) Link)在6 个方向上的种子散布格局。结果表明,在风的作用下,野大麦向东北方向散布的种子数量最多,比数量最少的西南方向多4 倍。种子散布半径平均约130cm 。不同方向单位面积的种子散布格局均较好地适合于Weibull分布,并反映出在松嫩平原自然条件下,野大麦具有远离母株扩大其潜在生态位空间的种子散布机制。不同方向野大麦顺序远离母株的种子散布数量均随着累积面积的增加呈Logistic曲线形式增长,其增长速率以种子散布数量多、距离远的东和东北方向相对较小  相似文献   

14.
Europe is attempting to contain or, in some regions, to eradicate the invading and maize destroying western corn rootworm (WCR). Eradication and containment measures include crop rotation and insecticide treatments within different types of buffer zones surrounding new introduction points. However, quantitative estimates of the relationship between the probability of adult dispersal and distance from an introduction point have not been used to determine the width of buffer zones. We address this by fitting dispersal models of the negative exponential and negative power law families in logarithmic and non-logarithmic form to recapture data from nine mark-release-recapture experiments of marked WCR adults from habitats as typically found in the vicinity of airports in southern Hungary in 2003 and 2004. After each release of 4000–6300 marked WCR, recaptures were recorded three times using non-baited yellow sticky traps at 30–305 m from the release point and sex pheromone-baited transparent sticky traps placed at 500–3500 m. Both the negative exponential and negative power law models in non-log form presented the best overall fit to the numbers of recaptured adults (1% recapture rate). The negative exponential model in log form presented the best fit to the data in the tail. The models suggested that half of the dispersing WCR adults travelling along a given bearing will have travelled between 117 and 425 m and 1% of the adults between 775 and 8250 m after 1 day. An individual-based model of dispersal and mortality over a generation of WCR adults indicated that 9.7–45.3% of the adults would escape a focus zone (where maize is only grown once in 3 consecutive years) of 1 km radius and 0.6–21% a safety zone (where maize is only grown once in 2 consecutive years) of 5 km radius and consequently current European Commission (EC) measures are inadequate for the eradication of WCR in Europe. Although buffer zones large enough to allow eradication would be economically unpalatable, an increase of the minimum width of the focus zone from 1 to 5 km and the safety zone from 5 to 50 km would improve the management of local dispersal.  相似文献   

15.
Abstract: Long-distance dispersal of seeds (LDD) surely affects most ecological and evolutionary processes related to plant species. Hence, numerous attempts to quantify LDD have been made and, especially for wind dispersal, several simulation models have been developed. However, the mechanisms promoting LDD by wind still remain ambiguous and the effects of different weather conditions on LDD, although recognized as important, have only rarely been investigated. Here we examine the influence of wind speed and updrafts on dispersal of dandelion ( Taraxacum officinale agg.), a typical wind-dispersed herb of open habitats. We used PAPPUS, a weather-sensitive mechanistic simulation model of wind dispersal, which considers frequency distribution of weather conditions during the period the simulation refers to. A simulation for the 4-month shedding period of dandelion shows that high wind speed does not promote LDD. In contrast, vertical turbulence, especially convective updrafts, are of overwhelming importance. Mainly caused by updrafts, in the simulations more than 0.05 % of dandelion seeds were dispersed beyond 100 m, a distance commonly used to define LDD. We conclude that long-distance dispersal of seeds of herbaceous species with falling velocities < 0.5 - 1.0 ms-1 is mainly caused by convective updrafts.  相似文献   

16.
1. Dispersal is a fundamental ecological process, so spatial models require realistic dispersal kernels. We compare five different forms for the dispersal kernel of the tansy beetle Chrysolina graminis moving between patches of its host-plant (tansy Tanacetum vulgare) in a riparian landscape. 2. Multi-patch mark-recapture data were collected every 2 weeks over 2 years within a large network of patches and from 2226 beetles. Dispersal was common (28.4% of 880 recaptures after a fortnight) and was more likely over longer intervals, out of small patches, for females and during flooding. Interpatch movement rates did not differ between years and exhibited no density dependence. Dispersal distances were similar for males and females, in both years and over all intervals, with a median dispersal distance of just 9.8 m, although a maximum of 856 m was recorded. 3. A model of dispersal, where patches competed for dispersers based on their size and distance from the beetle's source patch (scaled by the dispersal kernel) was fitted to the field data with a maximum likelihood procedure and each of five alternative kernels. The best fitting had relatively extended tails of long-distance dispersal, while Gaussian and negative exponential kernels performed worst. 4. The model suggests that females disperse more commonly than males and that both are strongly attracted to large patches but do not differ between years, which are consistent with the empirical results. Model-predicted emigration and immigration rates and dispersal phenologies match those observed, suggesting that the model captured the major drivers of tansy beetle dispersal. 5. Although negative exponential and Gaussian kernels are widely used for their simplicity, we suggest that these should not be the models of automatic choice, and that fat-tailed kernels with relatively higher proportions of long-distance dispersal may be more realistic.  相似文献   

17.
Humans can contribute to the long‐distance dispersal of many plants, including weeds. We assessed the distance for which seed remained attached to the socks and trouser legs of walkers. The experiment in Kakadu National Park, Australia used seed of the Australian native Black Spear Grass (Heteropogon contortus) as a surrogate for the potential dispersal of weed seed. Two models were fitted to the data, with a double exponential model fitting the data slightly better than a power exponential model. Although 19% of seed were dispersed within the first 5 m of walking, most (55%) seed remained attached to socks and trousers at 5 km. Humans may, therefore, unintentionally carry and eventually disperse this grass and other invasive grasses with similar long awns and pointed seeds over long distances. Implementing strategies to reduce the potential for seed to attach to walkers (gaiters) and reduce potential dispersal (removal and careful disposal of seed) would reduce the risks posed by this type of human‐mediated seed dispersal.  相似文献   

18.
19.
Understanding dispersal ability of an invasive species is crucial for describing its potential spread. Despite this, we still know little about the dispersal potential of many invasive species. We explored dispersal spectra in Pinus strobus, an invasive tree in sandstone areas in Central Europe. We studied dispersal of the species using distribution of self-sown trees in the field. We compared these observed data with theoretical dispersal curves derived using information on wind speed, seed terminal velocity and tree height. Finally, we fitted various empirical dispersal curves to the observed data. All the analyses based on the observed field data were done for the whole dataset, and for the dataset divided by habitat types and age categories of the self-sown trees. P. strobus seeds can disperse up to 757.5 m from the source. The observed data fall within the confidence intervals of the predictions based on a negative exponential model. When comparing different dispersal functions fitted to the data, it was not easy to decide which of the dispersal curves provides the overall best fit. This was because different functions were the best predictors of different parts of the dispersal curve. We suggest that future studies should provide not only empirical fitted dispersal curves but also observed data and provide estimates of confidence intervals. Such information will provide insights into the reliability of the dispersal estimates in general and help to evaluate the predictive power of the different models.  相似文献   

20.
This report presents data from experiments on seed dispersal by wind for ten species of the family Apiaceae. Seed shadows were obtained in the field under natural conditions, using wind speeds between four and ten m/s. The flight of individual seeds was followed by eye, and seed shadows were acquired, with median distances varying from 0.7 to 3.1 m between species. Multiple regression models of wind speed and seed weight on dispersal distance were significant for six out of ten species; wind speed had significant effects in seven cases, but seed weight only once. A good correlation between mean terminal falling velocity of the seeds of a species and median dispersal distance, indicates the promising explanatory power that individual terminal velocity data might have on dispersal distance, together with wind speed and turbulence. The theory that seeds that seem to be adapted to wind dispersal travel much longer distances than seeds that have no adaptation was tested. Flattened and winged seeds were indeed found to be transported further by wind, but not much further. Moreover, the species with wind-adapted seeds were also taller, being an alternative explanation since their seeds experienced higher wind speeds at these greater heights. Furthermore, flattened and winged seeds were disseminated from ripe umbels at lower wind speeds in the laboratory. This means that the observed difference in dispersal distance would have been smaller when species specific thresholds for wind speed were incorporated in the field experiments. We argue therefore, that seed morphology is not always the best predictor in classifying species in groups with distinctly different dispersal ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号