首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three mechanisms have been proposed to induce spatial synchrony in fluctuations of small mammal populations: climate‐related environmental effects, predation and dispersal. We conducted a field experiment in western Finland to evaluate the relative roles of these mechanisms in inducing spatial synchrony among cyclic populations of field voles Microtus agrestis. The study was conducted during the increase and peak phases of a vole population cycle on four agricultural field sites situated 1.5–7.0 km apart. Each field contained two 0.5‐ha fenced enclosures and one 1‐ha unfenced control area. One enclosure per field allowed access by small mustelid predators and the other by avian predators; all enclosures prevented the dispersal of voles. The unfenced control areas allowed access by all predators as well as dispersal by voles. Enclosed vole populations were in a treatment‐wise asynchronous phase before the predator access treatments were applied. The growth rates of all enclosed populations were tightly synchronized during the course of the experiment. Conversely, synchrony both among the unfenced populations and between the fenced and unfenced populations was practically non‐existent. During winter, in the increase phase of the cycle, vole populations in all treatments declined to low densities due to a seasonal effect of winter food depletion. During summer, in the peak year of the vole cycle, all populations fluctuated in synchrony. At this time, both small mustelids and birds of prey appeared to be abundant enough to induce synchrony. Dispersal was identified as a potential contributor to synchronization, but the magnitude of its effects could not be reliably discerned. Our results indicate that no single mechanism can account for the observed patterns of spatial synchrony among cyclic northern vole populations. Rather, spatial synchronization is induced by different mechanisms, namely seasonality and predation, acting successively during different seasons and phases of the vole cycle.  相似文献   

2.
Small mammal populations often exhibit large-scale spatial synchrony, which is purportedly caused by stochastic weather-related environmental perturbations, predation or dispersal. To elucidate the relative synchronizing effects of environmental perturbations from those of dispersal movements of small mammalian prey or their predators, we investigated the spatial dynamics of Microtus vole populations in two differently structured landscapes which experience similar patterns of weather and climatic conditions. Vole and predator abundances were monitored for three years on 28 agricultural field sites arranged into two 120-km-long transect lines in western Finland. Sites on one transect were interconnected by continuous agricultural farmland (continuous landscape), while sites on the other were isolated from one another to a varying degree by mainly forests (fragmented landscape). Vole populations exhibited large-scale (>120 km) spatial synchrony in fluctuations, which did not differ in degree between the landscapes or decline with increasing distance between trapping sites. However, spatial variation in vole population growth rates was higher in the fragmented than in the continuous landscape. Although vole-eating predators were more numerous in the continuous agricultural landscape than in the fragmented, our results suggest that predators do not exert a great influence on the degree of spatial synchrony of vole population fluctuations, but they may contribute to bringing out-of-phase prey patches towards a regional density level. The spatial dynamics of vole populations were similar in both fragmented and continuous landscapes despite inter-landscape differences in both predator abundance and possibilities of vole dispersal. This implies that the primary source of synchronization lies in a common weather-related environment.  相似文献   

3.
Populations of the common vole Microtus arvalis in mid‐western France show cyclic dynamics with a three‐year period. Studies of cyclic vole populations in Fennoscandia have often found inter‐specific synchrony between the voles and other small mammals which share the voles' predators. Although predators are central to the favoured mechanism to explain Fennoscandian vole cycles and the spatial variation of small mammal populations, their role in vole cycles elsewhere, including France, is less clear. Establishing whether alternative prey species in France cycle in parallel with voles as they do in Fennoscandia is thus an important step towards understanding the generality of predators' influence on cyclic vole populations. We applied spatial and temporal autocorrelation and cross‐correlation methods to French populations of M. arvalis and two sympatric non‐cyclic small mammal species, Apodemus sylvaticus and Crocidura russula. Patterns of time‐lagged cross‐correlation between the abundance of M. arvalis and the other two species suggested synchrony in their dynamics beyond that expected of stochastic environmental variation, and indicated a weak three‐year cycle in A. sylvaticus and C. russula that was in phase with that of M. arvalis. We interpret the synchrony between these species as the effect of shared predators and environmental stochasticity. Abundance within species showed weak spatial autocorrelation in June at scales consistent with dispersal being the mechanism responsible, but a more general lack of spatial structure within and between species was consistent with the strong spatial synchrony at regional scales often found in fluctuations of small mammal abundance.  相似文献   

4.
1. Students of population cycles in small rodents in Fennoscandia have accumulated support for the predation hypothesis, which states that the gradient in cycle length and amplitude running from southern to northern Fennoscandia reflects the relative influence of specialist and generalist predators on vole dynamics, itself modulated by the presence of snow cover. The hypothesized role of snow cover is to isolate linked specialist predators, primarily the least weasel, Mustela n. nivalis L. and their prey, primarily field voles Microtus agrestis L., from the stabilizing influence of generalist predators. 2. The predation hypothesis does not readily account for the high amplitude and regular 3-year cycles of common voles documented in agricultural areas of western, central and eastern Europe. Such cycles are rarely mentioned in the literature pertaining to Fennoscandian cycles. 3. We consider new data on population cycles and demographic patterns of common voles Microtus arvalis Pallas in south-west France. We show that the patterns are wholly consistent with five of six patterns that characterize rodent cycles in Fennoscandia and that are satisfactorily explained by the predation hypothesis. They include the: (a) existence of cycle; (b) the occurrence of long-term changes in relative abundance and type of dynamics; (c) geographical synchrony over large areas; (d) interspecific synchrony; and (e) voles are large in the increase and peak phase and small in decline and low phase, namely. There is a striking similarity between the patterns shown by common vole populations in south-west France and those from Fennoscandian cyclic rodent populations, although the former are not consistent with a geographical extension of the latitudinal gradient south of Fennoscandia. 4. It is possible that the dominant interaction leading to multiannual rodent oscillations is different in different regions. We argue, however, that advocates of the predation hypothesis should embrace the challenge of developing a widely applicable explanation to population cycles, including justifying any limits to its applicability on ecological and not geographical grounds.  相似文献   

5.
Olavi Eskelinen, Pertti Sulkava and Risto Sulkava From 1982 to 2003 we studied fluctuations in populations of the wood lemmingMyopus schisticolor (Liljeborg, 1844) in the Heinävesi (eastern Finland) and Keuruu regions (western Finland) by counting field signs and dead animals in standardized field surveys. We compared the population fluctuations of lemmings to those of other voles, owls and small mustelids in these regions. The lemming population in Heinävesi fluctuated regularly in 3-year cycles and in synchrony with the field vole population. Populations of owls also fluctuated in synchrony with wood lemming and field vole populations. In the Keuruu region, oscillations in the wood lemming population were irregular, and neither lemming and vole populations nor lemming and owl populations were correlated. Although direct mechanistic evidence is lacking, specialist predators such as weasels and owls probably cause the cyclicity in the field vole and wood lemming populations in the Heinävesi area. On the other hand, scarcity of high-quality habitats, unfavourable winter weather conditions and generalist predators may prevent the development of cyclicity in the wood lemming population of Keuruu.  相似文献   

6.
The effect of landscape composition on the breeding success of vole-eating Tengmalm's owl ( Aegolius funereus ) was studied in western Finland at five different spatial scales (250–4000 m) around the nests during two consecutive three-year population cycles of voles. Landscape composition had strongest effects on owl breeding in the decrease phase of vole cycles. Significant variation in owl breeding occurred along the productivity gradient from farmland predominated areas to barren hinterland. Owls tended to produce earlier clutches on territories predominated by agricultural areas in increasing vole years. A similar trend was observed in the decreasing phase of the vole cycle; owls breeding on barren hinterland seemed to delay breeding compared to owls breeding near agricultural areas. Surprisingly, nestling survival and fledgling production in the decreasing phase declined steeply with increasing proportion of farmland. Clutch size was not significantly related to landscape composition. The number of fledglings decreased with increases in clear-cut and sapling areas in the decrease phase. During the declining years of vole abundance nestling survival increased from western farmland areas towards the eastern outlying district. These results indicate sudden summer decline of vole populations on farmland predominated habitats. This is probably due to that the number of vole-eating predators, and hence their impact on vole populations is apparently higher in farmland areas than on forested hinterland. This finding gives support for the 'spill-over' hypothesis, which states that predators and their exploitation tends to 'spill over' from luxuriant habitats to the barren habitats.  相似文献   

7.
The synchronization of the dynamics of spatially subdivided populations is of both fundamental and applied interest in population biology. Based on theoretical studies, dispersal movements have been inferred to be one of the most general causes of population synchrony, yet no empirical study has mapped distance-dependent estimates of movement rates on the actual pattern of synchrony in species that are known to exhibit population synchrony. Northern vole and lemming species are particularly well-known for their spatially synchronized population dynamics. Here, we use results from an experimental study to demonstrate that tundra vole dispersal movements did not act to synchronize population dynamics in fragmented habitats. In contrast to the constant dispersal rate assumed in earlier theoretical studies, the tundra vole, and many other species, exhibit negative density-dependent dispersal. Simulations of a simple mathematical model, parametrized on the basis of our experimental data, verify the empirical results, namely that the observed negative density-dependent dispersal did not have a significant synchronizing effect.  相似文献   

8.
The regional synchrony of short-term population fluctuations of small rodents and small game has usually been explained by varying impacts of generalist predators subsisting on both voles and small game (the "alternative prey hypothesis" APH). APH says that densities of predators increase as a response to increasing vole densities and then these predators shift their diet from the main prey to the alternative prey when the main prey decline and vice versa. We studied the diet composition of breeding common buzzards Buteo buteo during 1985-92 in western Finland. Microtus voles were the main prey and water voles, shrews, forest grouse, hares and small birds the most important alternative prey. Our data from the between-year variation in the diet composition of buzzards fulfilled the main predictions of APH. The yearly proportion of main prey (Microtus voles) in the diet was higher in years of high than low vole abundance. The proportion of grouse in the diet of buzzards was negatively related to the abundance of Microtus voles in the field and was nearly independent of grouse abundance in the field. In addition, buzzards mainly took grouse chicks and young hares which is consistent with the prediction of APH. Therefore, we conclude that buzzards are able to shift their diet in the way predicted by the APH and that buzzards, together with other generalist predators, may reduce the breeding success of small game in the decline phase of the vole cycle, and thus substantially contribute to the existence of short-term population cycles of small game.  相似文献   

9.
Steen H  Mysterud A  Austrheim G 《Oecologia》2005,143(3):357-364
Inter-specific competition, facilitation and predation influence herbivore assemblages, but no study has experimentally explored the interactions between large ungulates and small rodents. In a fully replicated, landscape scale experiment, we manipulated densities of domestic sheep in mountain pastures in Norway. We then determined population growth and densities of rodents by live trapping in each of the areas with different sheep densities. We found that the (summer) population growth rate and autumn density of the field vole (Microtus agrestis) was lower at high sheep density. This provides the first experimental evidence of negative interactions between an ungulate and small rodent species. There was no effect on the bank vole (Clethrionomys glareolus), whose diet differs from sheep. Sheep density, therefore, potentially alters the pattern of inter-specific population synchrony amongst voles. Our study shows that negative interactions between large ungulates and small rodents may be species-specific and negative population consequences for the rodent population appear above threshold ungulate densities.Electronic supplementary material is available for this article at  相似文献   

10.
Lennart Hansson 《Oecologia》2002,130(2):259-266
Geographically varying rodent dynamics may be due to specific landscape effects or to regional variation. Two common vole species (Clethrionomys glareolus and Microtus agrestis), their main predators and their impact on some important food items were monitored in Sweden on forest clearcuts in two different landscape types, situated in two different regions with different climatic conditions. Censuses, with 10-16 clearcuts in each landscape and both landscapes in the two regions, were designed to permit analyses of variance of the effects of landscape composition and region on dynamics and species interactions. Region had a far greater influence than landscape on vole numbers, on the proportions of generalist and specialist predators and on the winter browsing of bark of indigenous and experimental woody plants as well on seed consumption in experimental supplies. The findings indicated an influence of the depth and quality of the snow cover on the predation rates by generalist and specialist predators. However, there were also clear signs of food limitation in the snow-rich areas. Such areas had fewer generalist predators, which probably meant less directly density-dependent predation. Thus, lack of high-quality food may put a brake on population growth in climatically harsh regions, permitting increasing populations of specialist predators such as small mustelids to subsequently over-utilise their main prey and potentially cause prolonged low densities. Snow conditions may affect numbers and interactions both within habitats, landscapes and regions. Thus, to more fully understand rodent dynamics, small-scale movements and interactions of individuals in relation to the main large-scale factor(s) of various regions need to be examined.  相似文献   

11.
Predation impacts by introduced predators are predicted to be most intense in island ecosystems, and also variable depending on environmental conditions, but large-scale experimental field testing is rare. In this study we examine the factors that determine the distribution and abundance of vole metapopulations preyed upon by feral American mink Mustela vison in the outer Finnish archipelago of the Baltic Sea. Specifically, we follow the dynamics of field voles Microtus agrestis and bank voles Clethrionomys glareolus on 40 small islands under variable rainfall as part of a large-scale mink removal experiment. For both vole species occupancy rates were negatively influenced by island isolation, as were extinction events for field voles. High summer rainfall in 1998 corresponded to large vole populations where mink were absent, populations that then crashed in 1999 and 2000 when below average rains fell during the summer breeding season. Where mink were present however, vole abundance remained more constant between years with no boom-bust apparent. We conclude that weather and predation may drive vole abundance whereas habitat patchiness and metapopulation processes more strongly drive vole distributions. There may also be potential for interaction between these factors: because feral mink prevent rapid vole population growth after good summer rains, and vole dispersal is influenced by population size, feral mink may be changing vole dispersal patterns to disrupt the natural metapopulation dynamic. Hence this indirect impact of mink could lead to gradual erosion of vole populations in the outer archipelago by reducing recolonisation processes.  相似文献   

12.
The impact of landscape structure and land management on dispersal of populations of wild species inhabiting the agricultural landscape was investigated focusing on the field vole (Microtus agrestis) in three different areas in Denmark using molecular genetic markers. The main hypotheses were the following: (i) organic farms act as genetic sources and diversity reservoirs for species living in agricultural areas and (ii) gene flow and genetic structure in the agricultural landscape are influenced by the degree of landscape complexity and connectivity. A total of 443 individual voles were sampled within 2 consecutive years from two agricultural areas and one relatively undisturbed grassland area. As genetic markers, 15 polymorphic microsatellite loci (nuclear markers) and the central part of the cytochrome-b (mitochondrial sequence) were analysed for all samples. The results indicate that management (that is, organic or conventional management) was important for genetic population structure across the landscape, but that landscape structure was the main factor shaping gene flow and genetic diversity. More importantly, the presence of organically managed areas did not act as a genetic reservoir for conventional areas, instead the most important predictor of effective population size was the amount of unmanaged available habitat (core area). The relatively undisturbed natural area showed a lower level of genetic structuring and genetic diversity compared with the two agricultural areas. These findings altogether suggest that political decisions for supporting wildlife friendly land management should take into account both management and landscape structure factors.  相似文献   

13.
Spatial synchrony of population fluctuations is ubiquitous in nature. Theoretical models suggest that correlated environmental stochasticity, dispersal, and trophic interactions are important promoters of synchrony in nature to leave characteristic signatures of distance‐dependent decays in synchrony. Recent refinements of this theory have clarified how distance‐decay curves may steepen if local dynamics are governed by different density‐dependent feedbacks and how synchrony should vary regionally if the importance and correlation of environmental stochasticity is location‐specific. We analysed spatiotemporal data for the common vole, Microtus arvalis from 49 districts in the Czech Republic to examine the pattern of population synchrony between 2000 and 2014. By extending the nonparametric covariation function, we develop a quantitative method that allows a dissection of the effects of distance and additional variables such as altitude on synchrony. To examine the pattern of local synchrony, we apply the noncentered local‐indicators of spatial association (ncLISA) which highlights areas with different degrees of synchrony than expected by the region‐wide average. Additionally, in order to understand the obtained pattern of local spatial correlations, we have regressed LISA results against the proportion of forest in each district. The common vole abundances fluctuated strongly and exhibited synchronous dynamics with the typical tendency for a decline of synchrony with increasing distance but, not with altitude. The correlation between the neighbor districts decreases as the proportion of forest increases. Forested areas are suboptimum habitats and are strongly avoided by common voles. The investigation of spatiotemporal dynamics in animal populations is a key issue in ecology. Although the majority of studies are focused on testing hypotheses about which mechanisms are involved in shaping this dynamics it is crucial to understand the sources of variation involved in order to understand the underlying processes.  相似文献   

14.
Gene flow in natural populations may be strongly influenced by landscape features. The integration of landscape characteristics in population genetic studies may thus improve our understanding of population functioning. In this study, we investigated the population genetic structure and gene flow pattern for the common vole, Microtus arvalis, in a heterogeneous landscape characterised by strong spatial and temporal variation. The studied area is an intensive agricultural zone of approximately 500 km2 crossed by a motorway. We used individual-based Bayesian methods to define the number of population units and their spatial borders without prior delimitation of such units. Unexpectedly, we determined a single genetic unit that covered the entire area studied. In particular, the motorway considered as a likely barrier to dispersal was not associated with any spatial genetic discontinuity. Using computer simulations, we demonstrated that recent anthropogenic barriers to effective dispersal are difficult to detect through analysis of genetic variation for species with large effective population sizes. We observed a slight, but significant, pattern of isolation by distance over the whole study site. Spatial autocorrelation analyses detected genetic structuring on a local scale, most probably due to the social organisation of the study species. Overall, our analysis suggests intense small-scale dispersal associated with a large effective population size. High dispersal rates may be imposed by the strong spatio-temporal heterogeneity of habitat quality, which characterises intensive agroecosystems.  相似文献   

15.
We present a spatially explicit individual-based model of rodent dynamics, customized for the prairie vole species, Microtus ochrogaster. The model strives to represent the complexity of intertwining factors that determine the spatio-temporal dynamics of small rodents. It is based on trophic relationships and incorporates important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in the literature. The model is used to study the relation between persistence, landscape area and predation. We use the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for “small” and decreasing for “large” predation levels.  相似文献   

16.
Spatial synchrony in population dynamics is a ubiquitous feature across a range of taxa. Understanding factors influencing this synchrony may shed light on important drivers of population dynamics. Three mechanisms influence the degree of spatial synchrony between populations: dispersal, shared predators, and spatial environmental covariance (the Moran effect). We assessed demographic spatial synchrony in recruitment (calf:cow ratio) of 10 northern mountain caribou herds in the Yukon Territory, Canada (1982–2008). Shared predators and dispersal were ruled out as causal mechanisms of spatial recruitment synchrony in these herds and therefore any spatial synchrony should be due to the Moran effect. We also assessed the degree of spatial synchrony in April snow depth to represent environmental variability. The regional average spatial synchrony in detrended residuals of April snow depth was 0.46 (95% CI 0.37 to 0.55). Spatial synchrony in caribou recruitment was weak at 0.13 (95% CI −0.06 to 0.32). The spatial scale of synchrony in April snow depth and caribou recruitment was 330.2 km (95% CI 236.3 to 370.0 km) and 170.0 km (95% CI 69.5 to 282.8 km), respectively. We also investigated how the similarity in terrain features between herds influenced the degree of spatial synchrony using exponential decay models. Only the difference in elevation variability between herds during calving was supported by the data. Herds with more similar elevation variability may track snowmelt ablation patterns in a more similar fashion, which would subsequently result in more synchronized predation rates on calves and/or nutritional effects impacting juvenile survival. Interspecific interactions with predators and alternate prey may also influence spatial synchrony of recruitment in these herds.  相似文献   

17.
Differences in habitat use by prey and predator may lead to a shift of occupied niches and affect dynamics of their populations. The weasel Mustela nivalis specializes in hunting rodents, therefore habitat preferences of this predator may have important consequences for the population dynamics of its prey. We investigated habitat selection by weasels in the Bia?owie?a Forest in different seasons at the landscape and local scales, and evaluated possible consequences for the population dynamics of their prey. At the landscape scale, weasels preferred open habitats (both dry and wet) and avoided forest. In open areas they selected habitats with higher prey abundance, except during the low-density phase of the vole cycle, when the distribution of these predators was more uniform. Also in winter, the distribution of weasels at the landscape scale was proportional to available resources. In summer, within open dry and wet habitats, weasels preferred areas characterised by dense vegetation, but avoided poor plant cover. In winter, weasels used wet open areas proportionally to availability of habitats when hunting, but in contrast to summer, they rested only in habitats characterized by a lower water level, which offered better thermal conditions. At the local scale, the abundance of voles was a less important factor affecting the distribution of these predators. Although we were not able to provide direct evidence for the existence of refuges for voles, our results show that they may be located within habitat patches, where availability of dense plant cover and physiological constraints limit the activity of weasels. Our results indicate that in complex ecosystems of the temperate zone, characterized by a mosaic pattern of vegetation types and habitat specific dynamics of rodents, impact of weasels on prey populations might be limited.  相似文献   

18.
Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.  相似文献   

19.
The stoat and the least weasel are specialist predators of small rodents, and therefore their numbers are likely to depend on the availability of voles. These small predators are ecologically alike, but they differ somewhat in their diet. The stoat is larger in size than the least weasel and therefore capable of using a wider variety of prey species, while the least weasel is more restricted to small mammals. Voles in northern Fennoscandia exhibit cyclic dynamics of 3–5 years with large-scale spatial synchrony and geographical trends in cycle length and amplitude. We predicted that the cyclic dynamics of voles are reflected in the dynamics of their predators with slight differences between the stoat and the least weasel. In this study we use snow-tracking data to characterize the dynamics of small mustelids. The data were collected from different parts of Finland using permanent triangle-shaped census routes of 12 km in 1989 to 2003. Population fluctuations of small mustelids were generally multiannually periodic and in synchrony over large areas, but we did not find any clear geographical gradient in the attribute of small mustelid dynamics comparable to those observed in vole population fluctuations. Instead, we found a similar decreasing temporal trend in the abundances of both species as has been recently reported for voles.  相似文献   

20.
Theoretical models predict that a delayed density-dependent mortality factor with a time lag of ca 9 months is able to drive 3–5-yr population cycles of northern voles. We studied numerical responses of predators in western Finland during 1986–92, in an area with 3-yr population cycles of voles. Abundances of small mammals were monitored in several farmland areas (each 3 km2) by snap-trapping in April, June, August, and October (only in 1986–90), and the abundances of avian, mammalian, and reptilian predators by visual censuses during trapping occasions. The 3-yr cycle studied was a cycle of Microtus voles (field vole M. agrestis and sibling vole M. rossiaemeridionalis ) and their small-sized predators (small mustelids and vole-eating birds of prey). The numerical responses of both migratory avian predators and small mustelids to changes in vole densities were more alike than different. In late summer (August), the time lag in the numerical response of all main predators was short (0–4 months), whereas longer time lags prevailed from spring to early summer. The length of the time lag in spring appeared to be related to the length of the winter, which indicates that strong seasonality may create longer time lags to the numerical response of predators at northern latitudes than at more southern latitudes. Our results suggest that, from spring to early summer, predation by migratory avian predators may act in concordance with mustelid predation to produce the long time lag necessary to drive the 3-yr cycle of voles, whereas almost direct density-dependent predation by all major predators in late summer may dampen spatial variation in prey densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号