首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The algal communities associated with Avicennia pneumatophores in Western Port Bay, Victoria, Australia (145°E:38°S) are composed primarily of the red algae Bostrychia, Caloglossa and Catenella. Trends from seaward to landward indicate a decrease in frequency of occurrence, relative cover, and mean absolute biomass for all algal genera but differing trends occur for each genus in terms of relative biomass, and this is reflected in associated pattern analyses. In terms of vertical community structure, all algae occur most frequently in the 5–10 cm segment above mudline, whereas above 20 cm, values for all measured parameters decline. Vertical structure in the seaward and landward regions is compared, but pattern analyses indicate that no biologically distinctive pattern is present. Deliberately denuded pneumatophores quickly become recolonized; greater algal development occurs above 10 cm above the mudline than below 10 cm, and the new community is differently structured.  相似文献   

2.
The number of species, total density and total biomass of molluscswere examined for 50 m either side of an Avicennia pneumatophoreboundary in the Bay of Rest, North West Cape, Western Australia(22°18'S; 114° 08'E). Two mollusc assemblages were found,separated almost exactly at the pneumatophore boundary. Themudflat association had more species of molluscs but a lowertotal density and total biomass than the assemblage in the Avicenniazone. Stations among pneumatophores on the seaward fringe ofthe Avicennia zone were more diverse and had a greater densityand biomass than stations among the trees. Possible reasonsfor the pneumatophore area having a higher density and biomassof molluscs than the adjacent mudflat and tree zones are discussed. (Received 18 June 1985;  相似文献   

3.
Human-made structures, such as groynes, breakwaters, seawalls, pier pilings and floating pontoons, are becoming common features of the landscape in urbanised coastal and estuarine areas. Despite this tendency few studies have focused on their ecology or on their potential impacts on natural assemblages of organisms. When artificial structures are introduced in areas with little or no hard substrata, they not only provide novel habitats, which enables the colonisation of sandy areas by hard-bottom dwelling species, but they can also provide suitable habitats for exotic species. Along the north-east coast of Italy, sandy shores are protected from erosion by a line of breakwaters, which runs almost uninterrupted for about 300 km. These structures provide habitat for a variety of macroalgae and invertebrates and also for the invasive green alga Codium fragile ssp. tomentosoides. The aim of this study was, therefore, to investigate patterns of distribution of this alga on breakwaters in Cesenatico. In particular, we compared the density of thalli, biomass, length and degree of branching of C. fragile ssp. tomentosoides between the landward and the seaward sides of breakwaters, to test the hypothesis that sheltered habitats (landward) represent more suitable habitats than exposed habitats (seaward). In general, the landward side of breakwaters supported greater numbers of thalli of C. fragile ssp. tomentosoides than seaward sides. Thalli grew longer and more branched in sheltered habitats, leading to an overall larger biomass of the alga on the landward side of breakwaters. The presence of sheltered human-made hard substrata in the vicinity of major trading ports and sources of eutrophication could enhance the dispersal of invasive species across regional and geographic scales. Thus, the effects of artificial structures and introduced species on coastal assemblages cannot be evaluated separately, but their synergistic nature should be considered in planning strategies for conservation of biodiversity in coastal habitats.  相似文献   

4.
Nitrogen and phosphorus are the primary nutrients that affect water quality in streams in the midwestern USA and high concentrations of these nutrients tend to increase algal biomass. However, how nutrients interact with physical controls in regulating algal biomass is not well known in agricultural streams. Eighteen streams in east-central Illinois (USA) were sampled during June and September 2003 to analyze factors possibly regulating algal biomass. Additionally, two shaded and two non-shaded sites in the Embarras River in east-central Illinois were sampled intensively from June to December 2003. Both sestonic and periphytic chlorophyll-a (chl-a) were analyzed, and periphytic chl-a was assessed on natural substrata and unglazed ceramic tiles. Although high concentrations of nutrients were found in these streams (mean total P = 0.09–0.122 mg l−1 and mean NO3-N=4.4–8.4 mg l−1), concentrations of sestonic chl-a were low among all sites and both sampling periods (<18 mg m−3, median values of 5 and 3 in June and September, respectively). Filamentous algae were an important component of the algal communities in streams with stable substrata. Periphytic chl-a was generally not related to the concentration of N or P in the water column, and in non-shaded streams periphyton appeared at times to be light-limited due to turbid water. Turbidity was found to be an important factor controlling chl-a on ceramic tiles across the 18 sites and for the Embarras River sites; chl-a decreased exponentially in concentration (132–0 mg m−2) as turbidity increased from 4 to 39 NTU (r 2 = 0.80). In general, the interaction between hydrology and light (turbidity) likely controlled algal biomass in these nutrient-rich, agricultural streams.  相似文献   

5.
Variation of polysaccharide concentration in irrigation-channel sediment was determined concurrently with biological, chemical and physical factors influencing the benthic algal community. Phenol-sulphuric acid method was used to measure polysaccharide concentration. Polysaccharide concentration, biomass of benthic algae, and species composition changed spatially and temporally. Fluctuations of total suspended solid (TSS) concentration and exposure of channel bed to direct sunlight had major effects on algal growth and polysaccharide production. Polysaccharide concentration was correlated to chlorophyll a concentration (r=0.73, P<0.001) and algal biomass (r=0.57, P<0.001). Fragilaria construens and Aulacoseira (Melosira) italica were the most common diatoms in the benthic flora. Chlorophyll a concentration in the sediment showed a strong negative correlation (r=-0.99, P<0.001) with the seasonal variation of TSS concentration in channel water. The polysaccharides produced by benthic microorganisms play a major role in clogging channel bed and thereby reducing seepage from earthen irrigation channels. Correlations between polysaccharide concentration and chlorophyll a (and algal biomass) further indicate the importance of benthic algae for polysaccharide production. Since availability of light to the algal flora is critical for the production of polysaccharides, the effect of clogging can be maximized by exposing the channel bed to direct sunlight during non-irrigation period (winter).  相似文献   

6.
【目的】为探明锡林河流域潜在不产氧光合细菌(anoxygenic photosynthetic bacteria,AnPB)的陆向分异特征及影响因素。【方法】本研究沿着陆向梯度依次采集水生湍流带、缓流带、滞流带、水偏湿生样带、湿偏旱生样带、旱生样带土壤样品。基于文献建立AnPB在科水平的数据库,运用16S rRNA基因高通量测序筛选科水平潜在AnPB类群及其组成丰度的陆向分异,运用皮尔逊相关性及冗余分析等研究土壤理化因子对潜在AnPB陆向分异的影响。【结果】紫色硫细菌(外硫红螺菌科)和紫色非硫细菌(红杆菌科、红环菌科、醋酸杆菌科、丛毛单胞菌科、全噬菌科)主要分布在水生及水偏湿生生境,其相对丰度与湿度呈显著(P<0.05)或极显著(P<0.01)正相关关系;紫色非硫细菌(红螺菌科、慢生根瘤菌科、生丝微菌科、红菌科)、芽单胞菌科、酸杆菌科、绿色非硫细菌(蔷薇菌科)等主要分布在湿偏旱生和旱生环境中,其相对丰度与盐度和全氮含量呈显著(P<0.05)或极显著(P<0.01)正相关关系;多元回归树分析显示,盐度、湿度、全氮对潜在AnPB陆向分异的总解释度分别为62.39%、...  相似文献   

7.
Colonization rate and community structure of periphyton assemblages was examined on aluminium and glass substrata and compared to populations on four submerged macrophyte species in three temperature zones in Cholla Lake, Arizona, U.S.A. Higher densities were achieved over shorter incubation intervals in the warmer zones (26–35° C). Representatives from the planktonic diatom community were first to colonize artificial substrata during the initial two hour incubation period in all temperature zones. Two periphyton diatom representatives, Amphora coffeiformis and Cocconeis placentula var. lineata were the numerical dominants after one week. Cocconeis placentula var. lineata was most competitive on natural substrata at temperatures <26°C, while Amphora coffeiformis dominated temperature zones >26°C with no significant preferences for artificial or natural substrata. The significance of temperature, specific conductance and availability of living hosts is discussed with respect to regulating populations of these two common periphytic diatom species in alkaline waters in southwestern U.S.A. Similarity indices (SIMI) were used to compare algal assemblages on various natural and artificial substrata pairs. Periphyton assemblages were very similar on all natural substrata within similar temperature zones, with little or no preference for macrophyte species displaying similar leaf morphology. Diatom assemblages were quite similar on aluminium and glass substrata throughout the incubation period in all temperature zones, while blue-green algal populations were significantly different, particularly in the higher temperature zones (>28°C). Natural periphyton communities were best represented after four weeks incubation with aluminium substrata in warmer temperature zones (>28°C) or where filamentous blue-green algae dominated. The selection of adequate incubation time when employing artificial substrata to evaluate natural assemblages for different environmental conditions and algal populations is discussed.  相似文献   

8.
9.
We studied herbivory and grazer performance (i.e., fitness correlates) for the hydrobiid snail Potamopyrgus antipodarum, the leptophlebiid mayfly Deleatidium spp., and the conoesucid caddisfly Pycnocentrodes aeris, common, co-occurring algivores in many New Zealand streams. Grazing effects and costs of coexisting differed among these taxa reared at ambient densities in different combinations in microcosms with algal food conditions (on clay tiles) characteristic of heavily grazed streams. The prostrate diatoms Staurosirella leptostauron, Cymbella novazealandia, and Achnanthidium minutissimum were the dominant algal species on pre- and post-grazed tiles. The relative abundance of erect physiognomic forms, dominated by Synedra ulna and Fragilaria vaucheriae, were 2–3× higher in ungrazed controls and in snail alone treatments than in other grazer treatments. The green filamentous algae Mougeotia sp. and Stigeoclonium lubricum, and the cyanophyte Merismopedia glauca were present only in ungrazed controls. Grazers significantly reduced algal community biomass in treatments by 26–52% relative to controls, except snails alone. Snails (15–30%) burrowed into surrounding sand substrates, dampening their grazing impact on tiles. Caddisflies were more effective than mayflies or snails at removing algae because of higher foraging rates, a larger body size, and an abrasive sand-grained case. Algal biomass reductions did not affect grazer growth. However, pre-pupation rates of caddisflies and emergence rates of subimago mayflies were significantly higher in caddisfly-alone and mayfly-alone treatments, respectively, than in combined-species treatments. These results imply that a limited periphytic food supply ( < 0.3 mg AFDM cm−2) even over a relatively brief period ( ≤ 16 d) may have population-scale consequences for co-existing P. aeris and Deleatidium spp.  相似文献   

10.
The influence of predatory fish on the structure of stream food webs may be altered by the presence of forest canopy cover, and consequent differences in allochthonous inputs and primary production. Eight sites containing introduced brown trout (Salmo trutta) and eight sites that did not were sampled in the Cass region, South Island, New Zealand. For each predator category, half the sites were located in southern beech (Nothofagus) forest patches (range of canopy cover, 65–90%) and the other half were in tussock grassland. Food resources used by two dominant herbivores-detritivores were assessed using stable isotopes. 13C/12C ratios were obtained for coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), algal dominated biofilm from rocks, and larvae of Deleatidium (Ephemeroptera) and Olinga (Trichoptera). Total abundance and biomass of macroinvertebrates did not differ between streams with and without trout, but were significantly higher at grassland sites than forested sites. However, taxon richness and species composition differed substantially between trout and no-trout sites, irrespective of whether streams were located in forest or not. Trout streams typically contained more taxa, had low biomass of predatory invertebrates and large shredders, but a high proportion of consumers with cases or shells. The standing stock of CPOM was higher at forested sites, but there was less FPOM and more algae at sites with trout, regardless of the presence or absence of forest cover. The stable carbon isotope range for biofilm on rocks was broad and encompassed the narrow CPOM and FPOM ranges. At trout sites, carbon isotope ratios of Deleatidium, the most abundant invertebrate primary consumer, were closely related to biofilm values, but no relationship was found at no-trout sites where algal biomass was much lower. These results support a role for both bottom-up and top-down processes in controlling the structure of the stream communities studied, but indicate that predatory fish and forest cover had largely independent effects.  相似文献   

11.
Abstract: Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n = 152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass-Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P = 0.047), litter (P = 0.028), and wheat (P = 0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio = 1.035, 95% CI = 1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.  相似文献   

12.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
A mesocosm study was conducted to determine the effects of variable salinity and light on Vallisneria americana Michx. (wild celery) and associated algal community components in the lower St. Johns River, Florida. Fifteen centimeter diameter intact plant plugs were collected from the LSJR in March 2001 and transported to mesocosm facilities in Lafayette, Louisiana. A factorial experimental design was used consisting of three salinity levels (1, 8, and 18 ppt), three light levels (0, 50, and 90% shading), and three replicate mesocosms of each for a total of 27 mesocosms. The experiment consisted of a 4-week acclimation period followed by a 5-month treatment period. V. americana responded negatively to increased salinity. Although V. americana survived 8 ppt salinity, growth was limited. At 18 ppt, almost all V. americana aboveground biomass had perished within 10 weeks, but when salinity was lowered back to 1 ppt, approximately 20% of the aboveground biomass recovered within the following 10 weeks. At midtreatment harvest, light did not affect V. americana biomass directly (P = 0.8240), but by final harvest (20 weeks) light affected belowground biomass (P < 0.0014). Both salinity and light affected algal growth. Macroalgae dominated 1 ppt salinity treatments in ambient light, but phytoplankton dominated 8 and 18 ppt salinity treatments in ambient light. Algal communities were greatly inhibited by 90% shading. While salinity directly impacted V. americana growth and survival, light effects were less direct and involved algal community associations.  相似文献   

14.
The longitudinal patterns of the macroinvertebrate community in the Xiangxi Bay of the Three Gorges Reservoir (TGR) were investigated during the second (2nd) and third (3rd) impoundment stages (October 2006–July 2010), to test the effects of increased water level fluctuations (WLF) on the macroinvertebrates. By comparing to the former reports of the first (1st) impoundment stage (inter‐annual WLF 4 m), we found that oligochaetes dominated in three different stages in the Xiangxi Bay. However, the total abundance of macroinvertebrates showed a dramatical decline from the 1st to 2nd stage (inter‐annual WLF 11 m), but changed slightly from the 2nd to 3rd stage (inter‐annual WLF 30 m). This indicated that higher WLF in the 2nd stage had already greatly reduced the macroinvertebrates abundance, thereby the disturbance in the 3rd stage could only slightly affect the already reduced abundance. Three longitudinal zones (the mainstream zone, the lacustrine zone and the transitional zone) were found based on the macroinvertebrate density, biomass, and taxa richness, combined with the geographical location of each site. Significant differences in density and biomass of macroinvertebrate were found among different zones (P < 0.05), yet no significant difference was found in taxa richness (P > 0.05). Two‐way indicator species analysis showed that the community type in most sites varied in different seasons from the 2nd stage, exhibiting a dynamic zonation pattern, which differed with the stable pattern of the 1st stage. This seasonal feature was coupled to the seasonal changes of the WLF. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Abstract The upper few millimeters of intertidal sediment supports a varied biomass of microbial consortia and microphytobenthos. Many of these organisms release extracellular polymers into the surrounding sediment matrix that can result in sediment cohesion and the increased stability of the sediment. The relationship between the heterotrophic and autotrophic components of these biofilms is not well understood. A combination of mesocosm and field investigations were used to investigate the relationship between microbial production rate (algae and bacteria), the extracellular carbohydrates, biomass, and stability in conjunction with a variety of environmental factors. An inverse relationship was found between rates of algal production and sediment stability both in the field and in laboratory mesocosms, though the relationship was significant only in the field (P < 0.001). Stability of sediments increased with increasing bacterial production rate (P < 0.001). Positive correlations were found between sediment stability and a range of other variables, including algal biomass (P < 0.001), colloidal-S EPS (P < 0.001), colloidal-S carbohydrate (P < 0.01), colloidal-S EDTA (P < 0.01), and sediment water content (P < 0.001). Using the data acquired, a preliminary model was developed to predict changes in sediment stability. Chlorophyll a, water content, and colloidal-S EPS were found to be the most important predictors of stability in intact cores incubated under laboratory conditions. Differences observed in patterns of the surface (0–2 mm) distribution of colloidal-S carbohydrate and chlorophyll a when expressed on a dry weight or areal basis were attributed to effects of dewatering and concomitant changes in wet bulk density. The polymeric carbohydrate (colloidal-S EPS) component of the biofilms was not found to be a constant fraction of the colloidal-S carbohydrate extract, varying from 16 to 58%, and the percentage of polymer decreased logarithmically as chlorophyll a concentrations increased and the biofilms matured (P < 0.001). Changes in the relationships between these variables over the period of biofilm development and maturation highlight the difficulties in their use to predict sediment stability. Exopolymer concentrations were more closely correlated with algal biomass than with bacterial numbers. Rates of algal carbon fixation were considerably greater than those for bacteria, suggesting that the algae have a much greater potential for exopolymer production. It is suggested that the microphytobenthos secretions make a more important contribution to sediment stability. Received: 12 May 1999; Accepted: 13 October 1999; Online Publication: 24 March 2000  相似文献   

16.
Experimental studies evaluating the simultaneous effects of consumers, nutrients, and other biotic/abiotic factors on intact, natural food webs are rare, particularly among ecosystems of varying trophic conditions. We conducted a series of in situ studies that used nutrient-diffusing substrata with nitrogen (N) and phosphorus (P) concentrations in a full factorial design in three temperate, limestone streams in Pennsylvania across a trophic gradient (mesotrophic, eutrophic, and hypereutrophic streams). We assessed differences in algal and macroinvertebrate biomass, taxonomic composition, and functional groups relative to amended nutrients across the trophic gradient; as such, these results facilitated predictions about regulators of food web structure. All factors varied significantly among the streams (e.g., algal biomass P = 0.005, macroinvertebrate biomass P < 0.001, algal diversity P = 0.006, macroinvertebrate diversity P < 0.001, algal group P < 0.001, macroinvertebrate guilds P < 0.001); the streams, however, did not exhibit simple responses to nutrient amendment. Algal and macroinvertebrate biomass and diversity responded greatest in the mesotrophic stream while grazing seemed to be a strong factor preventing algal nutrient response in the eutrophic and hypereutrophic streams. Brillouin’s Evenness Index was most influenced by nutrient amendment (nutrient effect on algae and macroinvertebrates P = 0.021). As such, we concluded that biomass and diversity were mediated by complexity within intermediate trophic levels.  相似文献   

17.
为明晰高原鼢鼠干扰对大型土壤动物类群分布和功能群特征影响,选取祁连山东段高原鼢鼠典型分布高寒草甸,依据鼠丘密度将研究区划分4个干扰梯度,调查各干扰区植物、群落结构、土壤理化性质和大型土壤动物功能群组成。采用冗余分析方法探讨植物土壤因子对土壤动物功能群组成和分布的影响。结果表明:研究区植食性土壤动物为优势功能群,极重度干扰区植食性功能群丰富度和Shannon多样性指数显著高于中度和重度干扰区(P<0.05);高原鼢鼠干扰对高寒草甸土壤动物群落稳定和相似性影响较小;冗余分析表明土壤温度、紧实度、全氮和全钾以及莎草科生物量和植物物种均匀度均显著影响高寒草甸土壤动物功能群的空间分布(P<0.05),其中土壤温度对土壤动物功能群分布影响最为显著。  相似文献   

18.
Calanoid copepods are major components of most lacustrine ecosystems and their grazing activities may influence both phytoplankton biomass and species composition. To assess this we conducted four seasonal, in situ, grazing experiments in eutrophic Lake Rotomanuka, New Zealand. Ambient concentrations of late stage copepodites and adults of calanoid copepods (predominantly Calamoecia lucasi, but with small numbers of Boeckella delicata) were allowed to feed for nine days on natural phytoplankton assemblages suspended in the lake within 1160 litre polyethylene enclosures. The copepods reduced the total phytoplankton biomass of the dominant species in all experiments but were most effective in summer (the time of highest grazer biomass) followed by spring and autumn. In response to grazing pressure the density of individual algal species showed either no change or a decline. There were no taxa which increased in density in the presence of the copepods. The calanoid copepods suppressed the smallest phytoplankton species (especially those with GALD (Greatest Axial Linear Dimension) < µm) and there appeared to be no selection of algae on the basis of biovolume. Algal taxa which showed strong declines in abundance in the presence of the copepods include Cyclotella stelligera, Coelastrum spp., Trachelomonas spp., Cryptomonas spp., and Mallomonas akrokomos. Calanoid copepods are considered important grazers of phytoplankton biomass in this lake. The study supports the view that high phytoplankton:zooplankton biomass ratios and large average algal sizes characteristic of New Zealand lake plankton may, at least partly, be caused by year round grazing pressure on small algae shifting the competitive balance in favour of larger algal species.  相似文献   

19.
Litterfall and nutrient returns in red alder stands in western Washington   总被引:1,自引:0,他引:1  
Summary Litterfall was collected over 1 year from eight natural stands of red alder growing on different sites in western Washington. The stands occurred at various elevations and on different soils, and differed in age, basal area, and site index. Most litterfall was leaf litter (average 86 percent). Amounts of litterfall and leaf litter varied significantly (P<0.05) among the sites. Average weights of litterfall and leaf litter in kg ha–1 yr–1, were 5150 and 4440, respectively. Weight of leaf litter was not significantly (P<0.05) related to site index, stand age, or basal area. The sites varied significantly (P<0.05) in concentrations of all elements determined in the leaf litter, except Zn. Average chemical concentrations were: N, 1.98 percent; P, 0.09 percent; K, 0.44 percent; Ca, 1.01 percent; Mg, 0.21 percent; S, 0.17 percent; SO4–S, nil; Fe, 324 ppm; Mn, 311 ppm; Zn, 53 ppm; Cu, 13 ppm; and Al, 281 ppm. There were significant correlations between some stand characteristics and concentrations of some elements, and among the different chemical components of the leaf litter. Important correlations were found between stand age and P concentration (r=–0.84,P<0.01); weight of leaf litter and P concentration (r=0.74,P<0.05); weight of leaf litter and K concentration (r=0.71,P<0.05); concentrations of N and S (r=0.81,P<0.05); and concentrations of Fe and Al (r=0.98,P<0.01). Returns of the different elements to the soil by leaf litter varied among the different sites. Average nutrient and Al returns, in kg ha–1 yr–1, were: N, 82; Ca, 41; K, 19; Mg, 8; S, 7; P, 4; Fe, 1; Mn, 1; Al, 1; Zn, 0.2, and Cu, <0.1.  相似文献   

20.
南沙群岛美济礁海域夏季浮游动物群落特征   总被引:7,自引:0,他引:7  
杜飞雁  王雪辉  林昭进 《生态学报》2015,35(4):1014-1021
浮游动物是珊瑚礁生态系统中的重要组成部分,但国内相关研究相对较少。利用2012年7月在南沙群岛美济礁海域开展的13个站次的海洋生物调查数据,对美济礁浮游动物的群落特征进行研究,表明:(1)美济礁浮游动物种类组成丰富,共出现15个类群138种(类)浮游动物;(2)优势种组成复杂、区域变化明显,单一种的优势度不高;(3)浮游动物平均密度和湿重生物量分别为117.70个/m3、69.01 mg/m3,浮游幼虫在总密度中所占比例最大;(4)浮游动物非常丰富,多样性程度较高。平均丰富度、多样性指数和均匀度分别为4.93、3.33和0.67;(5)浮游动物可划分为2个群落,分别为潟湖-礁坪区群落和向海坡群落;(6)受珊瑚礁不同生物地貌带的空间异质性和水动力条件的影响,美济礁浮游动物群落区域差异明显。潟湖区浮游动物多样性较高,生物量最低;礁坪区浮游动物数量大,但分布不均匀,且多样性水平最低;向海坡区浮游动物种类最多、多样性非常丰富,但栖息密度最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号