首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the sites where a vein penetrates through the dura mater, two aspects deserve particular attention: (i) The delineation of the perivascular cleft, a space belonging to the interstitial cerebrospinal fluid (CSF) compartment, toward the interior hemal milieu of the dura mater. (ii) The relationship between the perivascular arachnoid layer and the subdural neurothelium at the point of vascular penetration. These problems were investigated in the rat and in two species of New-World monkeys (Cebus apella, Callitrix jacchus). Concerning the first aspect, tight appositions of meningeal cells to the vessel wall, the basal lamina of which is widened and enriched with microfibrils, prevent communication between the interstitial CSF in the perivascular cleft and the hemal milieu in the dura mater. With reference to the second aspect, the perivascular arachnoid cells are transformed into neurothelial cells at the point where they become exposed to the hemal milieu of the dura mater and subsequently continuous with the subdural neurothelium. Leptomeningeal protrusions encompassing outer CSF space can penetrate into the dura mater. These protrusions may expand and branch repeatedly, forming along the wall of the dural sinus Pacchionian granulations. At these sites, however, the structural integrity of the sinus wall and the Pacchionian granulation is not lost. Numerous vesiculations not only in the sinus and vascular walls, but also in the cellular arrays of the Pacchionian granulations or paravascular leptomeningeal protrusions indicate mechanisms of transcellular fluid transport. Moreover, the texture of the leptomeningeal protrusions favors an additional function of these structures as a "volume" buffer.  相似文献   

2.
This study deals with some macroscopical, microscopical, and ultrastructural aspects of the spinal cord central canal of the German shepherd dog. The caudal end of the spinal cord is constituted by the conus medullaris, which may extend to the first sacral vertebra, the terminal ventricle, and the filum terminale. The latter structure is considered as internum (second to third sacral vertebrae) or externum (fifth caudal vertebra), according to its relation to the dura mater. Occasionally, there is a second anchorage which is close to the level of the sixth caudal vertebra. The central canal is surrounded by a ciliated ependymal epithelium, which differs depending upon the levels. The most caudal part of the filum terminale bears a columnar ciliated ependymal epithelium surrounded by two layers of glia and pia mater, which separate the central canal from the subarachnoid space. Microfil injections show a communication between the cavity and the subarachnoid space, as the plastic is able to pass through the ependymal epithelium. At the level of the terminal ventricle there are real separations of the ependymal epithelium, which seem to connect the lumen of the spinal canal with the subarachnoid space. These structures probably constitute one of the drainage pathways of the cerebrospinal fluid. The diameter of the central canal is related to the age of the animal. However, even in very old animals the spinal cord central canal reaches the tip of the filum terminale and remains patent until death. At the ultrastructural level the ependymal cells present villi, located on cytoplasmic projections, cilia, dense mitochondria, and oval nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The distribution of the membrane-bound magnesium ions-dependent adenosine triphosphatase (Mg-ATPase) activity has been studied ultracytochemically in rat meninges by the method of Wachstein and Meisel (1957). A device specially constructed to avoid preparation artefacts has been used to obtain sections from the parietal region of the head. The meninges display an intense though irregularly distributed ATPase activity marked by depositions of electron-dense reaction product (RP) which is almost absent in the outer and middle dural layers. In the borderline zone between dura mater and the arachnoid the RP deposits are found at the outer surface of the inner dural cells and at the contact sites between these cells and the dural neurothelium. The intercellular cleft(s) between the neurothelium and the outer arachnoidal layer, occupied by an "electron-dense band", remains free of RP. The strongest accumulations of reactions granules are observed on the surface of the leptomeningeal cells of the arachnoidal space. In the contact region between the inner arachnoidal and the outer pial layers the distribution of the RP is similar to the one observed in the interface zone dura mater/arachnoid, while the pial cells themselves are definitely reaction-positive. In all meningeal vessels RP is found at the lumenal and abluminal aspects of the endothelium as well as at the cell membranes of the perivascular cells. These results emphasize the importance of the dural neurothelium for the functions of the blood-cerebrospinal fluid (CSF)-barrier between the dural blood vessels and the CSF.  相似文献   

4.
Although the central nervous system is considered a comparatively static tissue with limited cell turnover, cells with stem cell properties have been isolated from most neural tissues. The spinal cord ependymal cells show neural stem cell potential in vitro and in vivo in injured spinal cord. However, very little is known regarding the ependymal niche in the mouse spinal cord. We previously reported that a secreted factor, chick Akhirin, is expressed in the ciliary marginal zone of the eye, where it works as a heterophilic cell‐adhesion molecule. Here, we describe a new crucial function for mouse Akhirin (M‐AKH) in regulating the proliferation and differentiation of progenitors in the mouse spinal cord. During embryonic spinal cord development, M‐AKH is transiently expressed in the central canal ependymal cells, which possess latent neural stem cell properties. Targeted inactivation of the AKH gene in mice causes a reduction in the size of the spinal cord and decreases BrdU incorporation in the spinal cord. Remarkably, the expression patterns of ependymal niche molecules in AKH knockout (AKH?/?) mice are different from those of AKH+/+, both in vitro and in vivo. Furthermore, we provide evidence that AKH expression in the central canal is rapidly upregulated in the injured spinal cord. Taken together, these results indicate that M‐AKH plays a crucial role in mouse spinal cord formation by regulating the ependymal niche in the central canal. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 494–504, 2015  相似文献   

5.
A two-dimensional axi-symmetric numerical model is constructed of the spinal cord, consisting of elastic cord tissue surrounded by aqueous cerebrospinal fluid, in turn surrounded by elastic dura. The geometric and elastic parameters are simplified but of realistic order, compared with existing measurements. A distal reflecting site models scar tissue formed by earlier trauma to the cord, which is commonly associated with syrinx formation. Transients equivalent to both arterial pulsation and percussive coughing are used to excite wave propagation. Propagation is investigated in this model and one with a central canal down the middle of the cord tissue, and in further idealized versions of it, including a model with no cord, one with a rigid cord, one with a rigid dura, and a double-length untapered variant of the rigid-dura model. Analytical predictions for axial and radial wave-speeds in these different situations are compared with, and used to explain, the numerical outcomes. We find that the anatomic circumstances of the spinal cerebrospinal fluid cavity probably do not allow for significant wave steepening phenomena. The results indicate that wave propagation in the real cord is set by the elastic properties of both the cord tissue and the confining dura mater, fat, and bone. The central canal does not influence the wave propagation significantly.  相似文献   

6.
Summary The ependyma of the IVth ventricle and the central canal of the rat medulla oblongata was investigated using the cytochemical technique for alkaline phosphatase (AlPase) which revealed two types of ependymal cells in the medulla. The central canal type of the ependymal cell occupying the dorsal part of the central canal in the lower medulla exhibited intense AlPase activity with light microscopy. These cells had reaction products in all plasma membranes, including the microvilli and the cilia at the luminal cell surface. Some cells appeared to be tanycytes, since the process reached the basement membrane of the parenchymal blood vessel. The ventricular type of ependymal cells, which form the floor of the IVth ventricle and the central canal, contained no reaction products in any structure of the luminal cell surface.The possible relationship between the cerebrospinal fluid and the nervous tissues through the ependymal linings is discussed.  相似文献   

7.
Summary The meninges of albino Wistar rat embryos, aged between the 11th embryonic day (ED) and birth, were sectioned using a specially constructed device. This technique permits optimal microanatomical preservation of all tissues covering the convexity of the brain: skin, muscle, cartilage or bone, and the meninges. At ED11, the zone situated between the epidermis and the brain is occupied by a mesenchymal network. At ED12, part of this delicate network develops as a dense outer cellular layer, while the remainder retains its reticular appearance, thus forming an inner layer (the future meningeal tissue). At ED13, the dura mater starts to differentiate. At ED14, the bony anlage of the skull can be identified, and along with the proceeding maturation of dura mater some fibrillar structures resembling skeletal muscle fibers appear in the developing arachnoid space. At ED15–17, a primitive interface zone — dura mater/ arachnoid — is formed, comprised by an outer electronlucent and an inner electron-dense layer marking the outer aspect of the arachnoidal space. At ED18–19, the innermost cellular row of the inner durai layer transforms into neurothelium, which is separated from the darker arachnoidal cells by an electron-dense band. The arachnoidal trabecular zone with the leptomeningeal cells is formed at ED19. By the end of the prenatal period (ED20–21), its innermost part organizes into an inner arachnoidal layer and an outer and inner pial layer. The results from this study indicate (i) that dura mater and leptomeninges develop from an embryonic network of connective tissue-forming cells, and (ii) that the formation of cerebrospinal fluid (CSF)-containing spaces accompanies the differentiation of the meningeal cellular layers.  相似文献   

8.
Summary The circulation of the cerebrospinal fluid along the central canal and its access to the parenchyma of the spinal cord of the rat have been analyzed by injection of horseradish peroxidase (HRP) into the lateral ventricle. Peroxidase was found throughout the central canal 13 min after injection, suggesting a rapid circulation of cerebrospinal fluid along the central canal of the rat spinal cord. It was cleared from the central canal within 2 h, in contrast with the situation in the brain tissue, where it remained in the periventricular areas for 4 h. In the central canal, HRP bound to Reissner's fiber and the luminal surface of the ependymal cells; it penetrated through the intercellular space of the ependymal lining, reached the subependymal neuropil, the basement membrane of local capillaries, and appeared in the lumen of endothelial pinocytotic vesicles. Furthermore, it accumulated in the labyrinths of the basement membrane contacting the basolateral aspect of the ependymal cells. In ependymocytes, HRP was found in single pinocytotic vesicles. The blood vessels supplying the spinal cord were classified into two types. Type-A vessels penetrated the spinal cord laterally and dorsally and displayed the tracer along their external wall as far as the gray matter. Type-B vessels intruded into the spinal cord from the medial ventral sulcus and occupied the anterior commissure of the gray matter, approaching the central canal. They represented the only vessels marked by HRP along their course through the gray matter. HRP spread from the wall of type-B vessels, labeling the labyrinths, the intercellular space of the ependymal lining, and the lumen of the central canal. This suggests a communication between the central canal and the outer cerebrospinal fluid space, at the level of the medial ventral sulcus, via the intercellular spaces, the perivascular basement membrane and its labyrinthine extensions.  相似文献   

9.
Prostaglandin F is synthesized by prostaglandin F synthase, which exists in two types, prostaglandin F synthase I (PGFS I) and prostaglandin F synthase II (PGFS II). Prostaglandin F binds to its specific receptor, FP. Our previous immunohistochemical study showed the distinct localization of prostaglandin F synthases in rat spinal cord. PGFS I exists in neuronal somata and dendrites in the gray substance, and PGFS II exists in ependymal cells and tanycytes surrounding the central canal. Both enzymes are also present in endothelial cells of blood vessels in the white and gray substances of the spinal cord. In this study, we found that FP localizes in neuronal somata and dendrites but not in ependymal cells, tanycytes, or endothelial cells. Immunohistochemical analysis of serial sections showed the colocalization of FP and PGFS I. FP immunoreactivity was intense in spinal laminae I and II of the dorsal horn, a connection site of pain transmission, and was similar to that of PGFS I in neuronal elements. These findings suggest that prostaglandin F synthesized in the neuronal somata and dendrites exert an autocrine action there.—Suzuki-Yamamoto, T., K. Toida, Y. Sugimoto, and K. Ishimura. Colocalization of prostaglandin F receptor FP and prostaglandin F synthase-I in the spinal cord.  相似文献   

10.
The phylogenetic evolution was studied of both glial fibrillary acidic protein (GFAP) and vimentin expression in the ependyma of the adult vertebrate spinal cord. Eleven species from different vertebrate groups were examined using different fixatives and fixation procedures to demonstrate any differences in immunoreactivity. GFAP expression in the ependymal cells showed a clear inverse relation with phylogenetic evolution because it was more elevated in lower than in higher vertebrates. GFAP positive cells can be ependymocytes and tanycytes, although depending on their structural characteristics and distribution, the scarce GFAP positive ependymal cells in higher vertebrates may be tanycytes. Ependymal vimentin expression showed a species-dependent pattern instead of a phylogenetic pattern of expression. Vimentin positive ependymal cells were only found in fish and rats; in fish, they were tanycytes and were quite scarce, with only one or two cells per section being immunostained. However, in the rat spinal cord, all the ependymocytes showed positive immunostaining for vimentin. The importance of the immunohistochemical procedure, the cellular nature of GFAP positive ependymal cells and the relationship between tanycytes and ependymocytes are discussed, as well as GFAP and vimentin expression.  相似文献   

11.
采用了组织学和免疫组织化学的方法对商城肥鲵的脊髓和脊神经节的石蜡切片进行了研究。结果显示,商城肥鲵的脊髓可分为灰质和白质;白质外有3层膜包围,由外向内依次是硬脊膜、蛛网膜和软脊膜。常规染色显示脊神经节位于脊神经后根,外包被膜,呈不规则的卵圆形,神经节内的细胞有两种,一种为节细胞,胞体圆形或者卵圆形,大小不等,根据胞体的大小又可分为大脊神经节细胞和小脊神经节细胞;另一种细胞叫做卫星细胞,包裹在脊神经节细胞的周围。BDNF和IL-1α一抗均显示脊神经节细胞呈阳性,卫星细胞呈阴性,前者大神经节细胞阳性明显强于小神经节细胞,后者两种神经节细胞的阳性强度无显著差异。  相似文献   

12.
By means of noninjective methods of investigation a specific capillary network of a sinusoidal type, peculiar arteriolovenular anastomoses, additional reservoirs in the area of postcapillaries and venules described in the microcirculatory bed of the spinal dura mater. The peculiarity of this vascular bed is thought by the authors to be connected with liquor resorption from the subdural space of the spinal cord.  相似文献   

13.
Basing on our definition of the ES as a complex of peridural anatomical formations and taking into account certain peculiarities of their topographic distribution, 4 areas (anterior, posterior and two lateral) are defined. The posterior area of the ES by its sizes predominates over all the others. The ES value is determined by differences in rates of size increment of the vertebral canal and in rates of size increment of the spinal cord dura mater (SCDM). Position of the SCDM sac concerning the central axis of the canal predetermines++ the size of the ES four areas. The dimensions of the ES areas are not similar at various levels of the spinal column. For example, the dimensions of the ES posterior area in newborns are the greatest in the cervical part at CVII, in the thoracic--at ThIV-VII, in the lumbar--at LI-III, and the dimensions of the ES anterior area--at CVII, ThI-IV, LIV-V and Sr. The lateral ES areas are the widest at CI, ThIII, LV and SI. The greatest increase in the rate of increment of linear sizes and area is observed for the spinal canal and spinal cord in 5-, 8- and 9-month-old fetuses and for SCDM--in 5- and 8-month-old fetuses and for ES--in 6-, 8- and 9-month-old fetuses. The topographic peculiarities in the ES structure revealed and rearrangement of its dimensions in the fetuses and newborns can be useful in interpretation of problems on functional formation of the vertebral column, spinal cord and its tunics, and be of applied aspect at various manipulations performed in these formations in premature infants and in newborns.  相似文献   

14.
Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.  相似文献   

15.
In 94 corpses (59 male and 35 female) of mature persons the length of the spinal dura mater sac has been studied. The average length of the sac is 621 +/- 3 mm. In men its average length is 636 +/- 4 mm, it makes 40 mm more in length than that in women (596 +/- 4 mm). The length of various parts in the dura mater sac is not the same: the cervical part makes 23% of the whole length, the thoracic--47%, the lumbar--23%, the sacral--7%. In men the cervical part of the sac in average is 6 mm longer than the lumbar part, and in women--quite the reverse, it is 7 mm shorter than the lumbar part. The sacral part of the sac in women is 3 mm longer that that in men. The sex differences noted are statistically significant. It is stated that the length of the spinal cord, its dura mater and the vertebral column are related as 1:1.5:1.7, the length of their cervical parts--as 1:1.5:1.4. the thoracic--as 1:1.3:1.3, the lumbar--as 1:2.4:3, the sacrococcygeal--as 1:1.4:4.9, respectively. During ontogenesis the greatest increase in the dura mater sac takes place in the cervical part as compared to the spinal cord and the vertebral column; in the thoracic part the intensity of their growth is equal: in the lumbar and in the sacrococcygeal part the increase of the vertebral column is the greatest.  相似文献   

16.
The ependyma of the central canal of the spinal cord of the monkey Cercopithecus nigroviridis was examined by transmission electron microscopy. In the lumbar region and in the filum terminale, many cytoplasmatic protrusions are visible. They are irregular in size and shape and display many microvilli. They are extending into the lumen of the central canal. The basal parts of the ependymocytes occasionally have a very close association with the ependymal blood vessels. The pericapillary space, the pericapillary structures like pericytes and collagen fibrils, and the basal lamina are absent. Opposite branches of the ependymocytes growing together could be observed in the central canal, eventually forming a cytoplasmic unit. Cytoplasmatic extensions of the ependymocytes bridge the lumen of the central canal and melt into each another. Lacunae, such as described by LEONHARDT (1980) in the apical cytoplasm of the ependyma in the rabbit, do also exist in the ependyma coating the central canal of the spinal cord of the monkey Cercopithecus nigroviridis. Some of these lacunae have direct contact to the luminar surface of the central canal, others are separated. Cilia and short microvilli are coating the lacunae. Adjacent ependymal cells form complex interdigitations with each other. Close to their surface on the central canal, there are numerous zonulae adhaerentes. Profiles of the granular and agranular endoplasmatic reticulum are in very close contact to the fine filaments of the zonulae.  相似文献   

17.
Some morphofunctional peculiarities in microcirculatory pathways of the dura mater of the human spinal cord are described. They are concerned with the structure of arteriolo-venular anastomoses through which a rather large amount of arterial blood is transported into the venous bed. Around the vessels of arterial type running at an angle to the longitudinal axis of the vessel connective tissue fibres of the dura mater, there is a tissue layer intensively impregnated with silver salts and stained PAS-positively. The venous part of the dura mater microcirculatory pathways has a large number of accessory reservoirs in the form of venous "lakes". Functional importance of the peculiarities mentioned above for the dura mater and the perimedullar apparatus is clarified.  相似文献   

18.
19.
Summary Golgi methods were employed to study neurons and ependymal tanycytes in the posterior hypothalamus of the newt. The tanycytes send a few coarse, spiny or barbed processes towards the pia mater. In the periventricular grey, the neurohistological methods show common neurons, ranging from a multipolar to a plumed organization, and abundant liquor-contacting cells. These cells, possibly neurons, give rise to a process that reaches the cerebro-spinal fluid, and terminates in a spindle-shaped swelling, with a thin thread at its tip. In other cells, the intraventricular endings are bulbous or finger-like. The occurrence of: (1) branches of the liquor-contacting process, running parallel to the infundibular surface; (2) infundibular processes which end at the base or between the ependymal cell bodies; and (3) axons coursing in the same position, all indicates that the subependymal layer is a site for complex intercellular relationships. The significance of liquor-contacting cells and tanycytes is discussed, in view of the possibility that they may represent part of a system for hypothalamic regulation in response to changes in the CSF.  相似文献   

20.
Summary Reissner's fiber (RF) of the subcommissural organ (SCO), the central canal and its bordering structures, and the filum terminale were investigated in the bovine spinal cord by use of transmission electron microscopy, histochemical methods and light-microscopic immunocytochemistry. The primary antisera were raised against the bovine RF, or the SCO proper. Comparative immunocytochemical studies were also performed on the lumbo-sacral region of the rat, rabbit, dog and pig.At all levels of the bovine spinal cord, RF was strongly immunoreactive with both antisera. From cervical to upper sacral levels of the bovine spinal cord there was an increasing number of ependymal cells immunostainable with both antisera. The free surface of the central canal was covered by a layer of immunoreactive material. At sacral levels small subependymal immunoreactive cells were observed. From all these structures sharing the same immunoreactivity, only RF was stained by the paraldehyde-fuchsin and periodicacid-Schiff methods.At the ultrastructural level, ependymal cells with numerous protrusions extending into the central canal were seen in the lower lumbar segments, whereas cells displaying signs of secretory activity were principally found in the ependyma of the upper sacral levels. A few cerebrospinal fluid-contacting neurons were observed at all levels of the spinal cord; they were immunostained with an anti-tubulin serum.The lumbo-sacral segments of the dog, rat and rabbit, either fixed by vascular perfusion or in the same manner as the bovine material, did not show any immunoreactive structure other than RF.The possibilities that the immunoreactive ependymal cells might play a secretory or an absorptive role, or be the result of post-mortem events, are discussed.Supported by Grant I/38259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RS-82-18 from the Dirección de Investigaciones, Universidad Austral de ChileThe authors wish to thank Dr. Enrique Romeny from the Valdivia abattoir for kindly providing the bovine spinal cords  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号