首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
R. -A. Walk  B. Hock 《Planta》1977,134(3):277-285
The development of glyoxysomal malate dehydrogenase (gMDH, EC 1.1.1.37) during early germination of watermelon seedlings (Citrullus vulgaris Schrad.) was determined in the cotyledons by means of radial immunodiffusion. The active isoenzyme was found to be absent in dry seeds. By density labelling with deuterium oxide and incorporation of [14C] amino acids it was shown that the marked increase of gMDH activity in the cotyledons during the first 4 days of germination was due to de novo synthesis of the isoenzyme. The effects of protein synthesis inhibitors (cycloheximide and chloramphenicol) on the synthesis of gMDH indicated that the glyoxysomal isoenzyme was synthesized on cytoplasmic ribosomes. Possible mechanisms by which the glyoxysomal malate dehydrogenase isoenzyme reaches its final location in the cell are discussed.Abbreviations mMDH mitochondrial malate dehydrogenase - gMDH glyoxysomal malate dehydrogenase - D2O deuterium oxide - EDTA ethylenediaminetetraacetic acid, disodium salt  相似文献   

2.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

3.
R. -A. Walk  B. Hock 《Planta》1977,136(3):211-220
Molecular properties of the glyoxysomal and mitochondrial isoenzyme of malate dehydrogenase (EC 1.1.1.37; L-malate: NAD+ oxidoreductase) from watermelon cotyledons (Citrullus vulgaris Schrad.) were investigated, using completely purified enzyme preparations. The apparent molecular weights of the glyoxysomal and mitochondrial isoenzymes were found to be 67,000 and 74,000 respectively. Aggregation at high enzyme concentrations was observed with the glyoxysomal but not with the mitochondrial isoenzyme. Using sodium dodecyl sulfate electrophoresis each isoenzyme was found to be composed of two polypeptide chains of identical size (33,500 and 37,000, respectively). The isoenzymes differed in their isoelectric points (gMDH: 8,92, mMDH: 5.39), rate of heat inactivation (gMDH: 1/2 at 40°C=3.0 min; mMDH: stable at 40°C; 1/2 at 60°C=4.5 min), adsorption to dextran gels at low ionic strenght, stability against alkaline conditions and their pH optima for oxaloacetate reduction (gMDH: pH 6.6, mMDH: pH 7.5). Very similar pH optima, however, were observed for L-malate oxidation (pH 9.3–9.5). The results indicate that the glyoxysomal and mitochondrial MDH of watermelon cotyledons are distinct proteins of different structural composition.Abbreviations EDTA ethylene diamine tetraacetic acid - gMDH and mMDH glyoxysomal and mitochondrial malate dehydrogenase, respectively  相似文献   

4.
Summary 13C Nuclear magnetic resonance and fumarase and NAD-malate dehydrogenase isoenzyme studies were carried out in a strain of A. flavus which produces relatively high levels of l-malic acid from glucose. The results of the 13C NMR showed that the 13C label from [1-13C] glucose was incorporated only to C-3 (-CH2-) of l-malic acid and indicated that this acid must be synthesized from pyruvate mainly via oxaloacetate. Electrophoretic analysis has established the presence of unique mitochondrial and cytosolic isoenzymes for fumarase and malate dehydrogenase. Changes in the isoenzyme pattern were observed for malate dehydrogenase but not for fumarase during acid production. Cycloheximide inhibited profoundly both l-malic acid production and the increase in the major isoenzyme of malate dehydrogenase, without affecting either the total activity of fumarase or its isoenzyme pattern. The results suggested that de novo protein synthesis is involved in the increase in the activity of the major isoenzyme of malate dehydrogenase and that this isoenzyme is essential for l-malic acid production and accumulation.  相似文献   

5.
A malate dehydrogenase (MDH) was characterized from the cyanobacterium Coccochloris peniocystis. The enzyme was purified approximately 180-fold and had a molecular weight of about 90000. The enzyme had a pH optimum of pH 6.7 to 7.5; a Km (malate) of 5.6 mM and Kms for NAD and NADP of 24 M and 178 M, respectively, although similar Vmax were obtained with either pyridine nucleotide. Enzyme activity was inhibited by ATP, citrate, oxalacetate, acetyl CoA and CoA. Enzyme assays with uniformly 14C-labelled malate caused no 14CO2 release, indicating this MDH is not a malic enzyme. Electrophoresis and S-200 gel filtration of the partially purified enzyme indicated a single MDH was present in this preparation. A second, less abundant, MDH was present in crude extracts. The presence of MDH in this organism is consistent with the operation of a glyoxylate cycle which, in the absence of a TCA cycle, would provide organic acids required in secondary carbon metabolism. ATP inhibition of MDH may allow for light regulation of MDH activity since, in the light, oxaloacetic acid is generated by phosphoenolpyruvate carboxylase activity.Abbreviations MDH malate dehydrogenase - PEPcase phosphoenolpyruvate carboxylase - MOPS 3-[N-Morpholino] propane sulfonic acid - TRIS Tris(hydroxymethyl)-aminomethane - EDTA Disodium Ethylenadiamine Tetraacetate - MES 2[N-Morpholino]-ethane Sulfonic Acid - EPPS N-2-Hydroxyethylpiperazine Propane - MW Molecular weight - OAA Oxaloacetic acid  相似文献   

6.
Saccharomyces cerevisiae accumulates l-malic acid through a cytosolic pathway starting from pyruvic acid and involving the enzymes pyruvate carboxylase and malate dehydrogenase. In the present study, the role of malate dehydrogenase in the cytosolic pathway was studied. Overexpression of cytosolic malate dehydrogenase (MDH2) under either the strong inducible GAL10 or the constitutive PGK promoter causes a 6- to 16-fold increase in cytosolic MDH activity in growth and production media and up to 3.7-fold increase in l-malic acid accumulation in the production medium. The high apparent K m of MDH2 for l-malic acid (11.8 mM) indicates a low affinity of the enzyme for this acid, which is consistent with the cytosolic function of the enzyme and differs from the previously published K m of the mitochondrial enzyme (MDH1, 0.28 mM). Under conditions of MDH2 overexpression, pyruvate carboxylase appears to be a limiting factor, thus providing a system for further metabolic engineering of l-malic acid production. The overexpression of MDH2 activity also causes an elevation in the accumulation of fumaric acid and citric acid. Accumulation of fumaric acid is presumably caused by high intracellular l-malic acid concentrations and the activity of the cytosolic fumarase. The accumulation of citric acid may suggest the intriguing possibility that cytosolic l-malic acid is a direct precursor of citric acid in yeast. Received: 22 January 1997 / Received revision: 14 April 1997 / Accepted: 19 April 1997  相似文献   

7.
We report herein the complete coding sequence of a Taenia solium cytosolic malate dehydrogenase (TscMDH). The cDNA fragment, identified from the T. solium genome project database, encodes a protein of 332 amino acid residues with an estimated molecular weight of 36517 Da. For recombinant expression, the full length coding sequence was cloned into pET23a. After successful expression and enzyme purification, isoelectrofocusing gel electrophoresis allowed to confirm the calculated pI value at 8.1, as deduced from the amino acid sequence. The recombinant protein (r-TscMDH) showed MDH activity of 409 U/mg in the reduction of oxaloacetate, with neither lactate dehydrogenase activity nor NADPH selectivity. Optimum pH for enzyme activity was 7.6 for oxaloacetate reduction and 9.6 for malate oxidation. Kcat values for oxaloacetate, malate, NAD, and NADH were 665, 47, 385, and 962 s−1, respectively. Additionally, a partial characterization of TsMDH gene structure after analysis of a 1.56 Kb genomic contig assembly is also reported.  相似文献   

8.
P. Rustin  C. Queiroz-Claret 《Planta》1985,164(3):415-422
Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP+-or a mitochondrial NAD+-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD+-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes.Abbreviations CAM Crassulacean acid metabolism - MDH malate dehydrogenase - ME malic enzyme  相似文献   

9.
Malate dehydrogenase (MDH) catalyzes the readily reversible reaction of oxaloacetate ; malate using either NADH or NADPH as a reductant. In plants, the enzyme is important in providing malate for C 4 metabolism, pH balance, stomatal and pulvinal movement, respiration, β-oxidation of fatty acids, and legume root nodule functioning. Due to its diverse roles the enzyme occurs as numerous isozymes in various organelles. While antibodies have been produced and cDNAs characterized for plant mitochondrial, glyoxysomal, and chloroplast forms of MDH, little is known of other forms. Here we report the cloning and characterization of cDNAs encoding five different forms of alfalfa MDH, including a plant cytosolic MDH (cMDH) and a unique novel nodule-enhanced MDH (neMDH). Phylogenetic analyses show that neMDH is related to mitochondrial and glyoxysomal MDHs, but diverge from these forms early in land plant evolution. Four of the five forms could effectively complement an E. coli Mdh mutant. RNA and protein blots show that neMDH is most highly expressed in effective root nodules. Immunoprecipitation experiments show that antibodies produced to cMDH and neMDH are immunologically distinct and that the neMDH form comprises the major form of total MDH activity and protein in root nodules. Kinetic analysis showed that neMDH has a turnover rate and specificity constant that can account for the extraordinarily high synthesis of malate in nodules.   相似文献   

10.
A malate dehydrogenase (MDH) from Streptomyces avermitilis MA-4680 (SaMDH) has been expressed and purified as a fusion protein. The molecular mass of SaMDH is about 35 kDa determined by SDS-PAGE. The recombinant SaMDH has a maximum activity at pH 8.0. The enzyme shows the optimal temperature around 42°C and displays a half-life (t 1/2) of 160 min at 50°C which is more thermostable than reported MDHs from most bacteria and fungi. The k cat value of SaMDH is about 240-fold of that for malate oxidation. In addition, the k cat/K m ratio shows that SaMDH has about 1,246-fold preference for oxaloacetate (OAA) reduction over l-malate oxidation. The recombinant SaMDH may also use NADPH as a cofactor although it is a highly NAD(H)-specific enzyme. There was no activity detected when malate and NADP+ were used as substrates. Substrate inhibition studies show that SaMDH activity is strongly inhibited by excess OAA with NADH, but is not sensitive to excess l-malate. Enzymatic activity is enhanced by the addition of Na+, NH4 +, Ca2+, Cu2+ and Mg2+ and inhibited by addition of Hg2+ and Zn2+. MDH is widely used in coenzyme regeneration, antigen immunoassays and bioreactors. The enzymatic analysis could provide the important basic knowledge for its utilizations.  相似文献   

11.
Three isoenzymes of malate dehydrogenase have been isolated from 9-day-old wheat shoots. The microbody (peroxisome) and chloroplast MDH are similar in their electrophoretic behaviour. The mitochondrial MDH, soluble MDH and chloroplast MDH differ in Km values for malate and NAD. The activity of MDH isoenzymes with NAD+-analogues as substrate was in the order 3-AP-NAD+ > 3-AP-deam NAD+ > NAD+ > TN-NAD+ and deam NAD+. The thermal stabilities of the isoenzymes were significantly different: C-MDH > m-MDH > S-MDH.  相似文献   

12.
The microbody isoenzyme of malate dehydrogenase (EC 1.1.1.37) from leaves of Spinacia oleracea was purified to a specific activity of 3000 units/mg protein and examined for a number of physical, kinetic, and immunological properties. The purified enzyme has a molecular weight of approximately 70,000 and an isoelectric point of 5.65. Thermal inactivation first order rate constants were 0.068 (35 °C), 0.354 (45 °C), and 2.11 (55 °C) for irreversible denaturation. Apparent millimolar Michaelis constants are 0.34 (NAD, pH 8.5) 0.16 (NADH, pH 7.5), 3.33 (malate, pH 8.5), 0.07 (OAA, pH 6.0), 0.06 (OAA, pH 7.5), and 0.50 (OAA, pH 9.0). The enzyme is stablized by 20% glycerol and can be stored for several months at 4 °C without detectable loss of activity. The purified enzyme is sensitive to the ionic strength of the assay medium exhibiting a pH optimum of 5.65 at high ionic strength and 7.00 at low ionic strength. Rabbit antiserum prepared against the purified microbody MDH shows a single precipitin band on immunodiffusion analysis. Immunological studies indicate that rabbit antiserum prepared against the purified microbody enzyme cross reacts approximately 10% with the mitochondrial isoenzyme of MDH. No cross reaction was shown with the soluble isoenzyme. In general, the data presented in this report tend to support the notion of organelle specific isoenzymes of malate dehydrogenase in higher plant tissues and uniqueness of the microbody form of malate dehydrogenase in particular.  相似文献   

13.
M. Perl 《Planta》1978,139(3):239-243
Cotton (Gossypium hirsutum) seeds and Sorghum vulgare caryopses are able to incorporate CO2 through a PEP-carboxylating enzyme (EC 4.1.1.38). The enzyme activity is optimal at pH 8.2 and is unaffected by ATP, GDP or acetyl CoA. The partially purified cotton enzyme is stimulated by inorganic phosphate with an apparent Km of 0.3 mM. The enzymes from both cultivars are inhibited by pyrophosphate, malate, and aspartate but not by succinate. Kinetic studies for Sorghum and cotton seed enzymes show apparent Km values for carbonate of 5 mM and 1.2 mM and for PEP of 36 M and 5 mM, respectively. The Vmax values are 90 and 3.3 nmol min-1 mg protein-1, respectively.A two-fold increase in the enzyme activity from cotton seeds occurs after 2 h under laboratory germination conditions after which the activity drops sharply to 1/3 of the original activity after 5 h imbibition. No such change was observed in Sorghum caryopses enzyme. A correlation between PEP-carboxylase activity and seed vigor in both cultivars was demonstrated.Abbreviations GOT glutamicoxaloacetic-transaminase - MDH malic dehydrogenase-NADH2 - RH relative humidity  相似文献   

14.
Native and recombinant malate dehydrogenase (MDH) was characterized from the hyperthermophilic, facultatively autotrophic archaeon Pyrobaculum islandicum. The enzyme is a homotetramer with a subunit mass of 33 kDa. The activity kinetics of the native and recombinant proteins are the same. The apparent K m values of the recombinant protein for oxaloacetate (OAA) and NADH (at 80°C and pH 8.0) were 15 and 86 μM, respectively, with specific activity as high as 470 U mg−1. Activity decreased more than 90% when NADPH was used. The catalytic efficiency of OAA reduction by P. islandicum MDH using NADH was significantly higher than that reported for any other archaeal MDH. Unlike other archaeal MDHs, specific activity of the P. islandicum MDH back-reaction also decreased more than 90% when malate and NAD+ were used as substrates and was not detected with NADP+. A phylogenetic tree of 31 archaeal MDHs shows that they fall into 5 distinct groups separated largely along taxonomic lines suggesting minimal lateral mdh transfer between Archaea.  相似文献   

15.
Summary CO2 fixation characteristics of a number of mature (but not senescing) tissues and organs (the outer layers of green pod and the seed testa of Vicia faba L.; the outer layers of green pod and seeds of Trigonella foenum-graecum L.; the outer layers of the green fruit of Lycopersicon esculentum Mill.) were studied and compared with their respective C3 leaf characteristics. On a chlorophyll basis phosphoenolpyruvate carboxylase, malic enzyme (NADP) and malate dehydrogenase (NAD and NADP) acitivites were much higher in the non-leaf tissues (except for V. faba seed testa) than the leaf tissues. Generally, on a protein basis the differences were less significant. All tissues possessed ribulose-1.5-diphosphate carboxylase activity though there was great variation in activities both on a protein and chlorophyll basis. Protein: chlorophyll ratios varied greatly from tissue to tissue being lowest in the leaf tissue (11.5–14.0) and highest in V. faba seed testa (805.5). Chlorophyll a:b ratios were all between 2 and 3. 14CO2 uptake in the dark by L. esculentum fruit slices was about 1/3 that in the light and the major, initially labelled product was malate both in the light and dark. Neither typical C4-photosynthesis or crassulacean acid metabolism were exhibited by the non-leaf tissues and it was considered that the increased levels of certain enzyme activities were present to refix and recycle respired CO2.Abbreviations PEP phosphoenolpyruvate - RuDP ribulose -1,5-, diphosphate - MDH malate dehydrogenase - CAM Crassulacean acid metabolism - OAA oxaloacetic acid  相似文献   

16.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

17.
Abstract The response of the kinetic properties of NAD malate dehydrogenase (MDH) was compared for two clones of Lathy rus japonicus Willd. collected in two contrasting climatic sites in Eastern North America. MDH from the cold adapted maritime genotype (Hudson Bay, Québec) had lower thermostability, reduced apparent (Ea) and free (ΔG?) energy of activation and lower specific activity when compared to MDH of plants from the warm summer continental site (Lake Michigan). Electrophoretic analyses show little differentiation in the isozyme profiles of the two genotypes. Thermostability differences were primarily associated with the mitochondrial isozymes which, however, were not differentiated electrophoretically Substrate binding ability of MDH, as measured by apparent Km, was more sensitive to high assay temperature in the cold adapted maritime genotype.  相似文献   

18.
We identified and characterized a malate dehydrogenase from Streptomyces coelicolor A3(2) (ScMDH). The molecular mass of ScMDH was 73,353.5 Da with two 36,675.0 Da subunits as analyzed by matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry (MALDI-TOF-MS). The detailed kinetic parameters of recombinant ScMDH are reported here. Heat inactivation studies showed that ScMDH was more thermostable than most MDHs from other organisms, except for a few extremely thermophile bacteria. Recombinant ScMDH was highly NAD+-specific and displayed about 400-fold (k cat) and 1,050-fold (k cat?K m) preferences for oxaloacetate reduction over malate oxidation. Substrate inhibition studies showed that ScMDH activity was inhibited by excess oxaloacetate (K i=5.8 mM) and excess L-malate (K i=12.8 mM). Moreover, ScMDH activity was not affected by most metal ions, but was strongly inhibited by Fe2+ and Zn2+. Taken together, our findings indicate that ScMDH is significantly thermostable and presents a remarkably high catalytic efficiency for malate synthesis.  相似文献   

19.
The nucleotide sequence corresponding to codons for the 17-amino acid residues in the presumed targeting presequence for yeast mitochondrial malate dehydrogenase was removed by oligonucleotide-directed mutagenesis of the isolated gene (MDH1). Integrative transformation was used to insert the "leaderless" gene (mdhl-) into the MDH1 chromosomal locus of a strain containing a disrupted MDH1 gene. Expression of the mature form of malate dehydrogenase as a primary translation product was verified by demonstrating that the mature form is synthesized in mdhl- cells at the same rate as the precursor form in MDH1 cells in the presence of carbonyl cyanide m-chlorophenylhydrazone and by comparison of in vitro translation products of RNAs from mdhl- and MDH1 cells. Expression of mdhl- restores total cellular malate dehydrogenase activity to levels comparable to those in wild type cells and reverses the phenotype associated with strains containing MDH1 disruptions by restoring wild type rates of growth in media containing acetate as a carbon source. Immunochemical analyses and enzyme assays show comparable levels of malate dehydrogenase in the matrix fractions from mitochondria isolated from mdhl- and MDH1 cells and give no evidence for accumulation of the mature enzyme in the cytosol of mdhl- cells. These results indicate that the presequence for malate dehydrogenase is not essential for efficient mitochondrial localization or function in yeast.  相似文献   

20.
The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed. New address: Institut für Pflanzenphysiologie und Zellbiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16a. D-1000 Berlin 33  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号