首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smallpox, caused by variola virus, was a devastating disease in humans, but how the virus evolved a strategy to spread to tissue remains unknown. Through the use of microarrays, we identified the gene encoding the Wiskott-Aldrich syndrome protein (WASP), one of the five known WASP family members, which has been induced in the course of infection of human cells with different strains of vaccinia virus (VV) (S. Guerra, L. A. Lopez-Fernandez, A. Pascual-Montano, M. Munoz, K. Harshman, and M. Esteban, J. Virol. 77:6493-6506, 2003; S. Guerra, L. A. Lopez-Fernandez, R. Conde, A. Pascual-Montano, K. Harshman, and M. Esteban, J. Virol. 78:5820-5834, 2004). In a mouse model, we evaluated the role of WASP in infection with VV, a close relative of variola virus. WASP(-/-) (KO) mice infected intranasally and intraperitoneally with VV showed reduced weight loss and mortality compared to wild-type (WT) mice. WASP expression correlated with VV replication in the ovaries but not in the liver or spleen. WT mouse macrophages express WASP but not N-WASP; after VV infection, WASP levels increase threefold. KO macrophages lack N-WASP expression and, when VV infected, are incapable of inducing actin tails and producing extracellular virus. These functions were rescued in KO macrophages after ectopic WASP expression. Overall, our findings demonstrate that WASP has a role in orthopoxvirus infections. Use of WASP proteins for virus spread via the actin tail provides a selective advantage for VV, and probably variola virus, dissemination to distant tissues.  相似文献   

2.
The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate- and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and allows VV5-4 to survive, is independent of apoptosis. This mutant also provides evidence that an inductive signal for apoptosis upon vaccinia virus infection occurs prior to viral DNA replication.  相似文献   

3.
4.
5.
6.
7.
Vaccinia virus (VV) is an enveloped DNA virus from the poxvirus family and has played a crucial role in the eradication of smallpox. It continues to be used in immunotherapy for the prevention of infectious diseases and treatment of cancer. However, the mechanisms of poxvirus entry, the host factors that affect viral virulence, and the reasons for its natural tropism for tumor cells are incompletely understood. By studying the effect of hypoxia on VV infection, we found that vascular endothelial growth factor A (VEGF-A) augments oncolytic VV cytotoxicity. VEGF derived from tumor cells acts to increase VV internalization, resulting in increased replication and cytotoxicity in an AKT-dependent manner in both tumor cells and normal respiratory epithelial cells. Overexpression of VEGF also enhances VV infection within tumor tissue in vivo after systemic delivery. These results highlight the importance of VEGF expression in VV infection and have potential implications for the design of new strategies to prevent poxvirus infection and the development of future generations of oncolytic VV in combination with conventional or biological therapies.  相似文献   

8.
Oh J  Fraser NW 《Journal of virology》2008,82(7):3530-3537
Previous work has determined that there are nucleosomes on the herpes simplex virus (HSV) genome during a lytic infection but that they are not arranged in an equally spaced array like in cellular DNA. However, like in cellular DNA, the promoter regions of several viral genes have been shown to be associated with nucleosomes containing modified histone proteins that are generally found associated with actively transcribed genes. Furthermore, it has been found that the association of modified histones with the HSV genome can be detected at the earliest times postinfection (1 h postinfection) and increases up to 3 h postinfection. However from 3 h to 6 h postinfection (the late phase of the replication cycle), the association decreases. In this study we have examined histone association with promoter regions of all kinetic classes of genes. This was done over the time course of an infection in Sy5y cells using sucrose gradient sedimentation, bromodeoxyuridine labeling, chromatin immunoprecipitation assays, Western blot analysis, trypsin and DNase digestion, and quantitative real-time PCR. Because no histones were detected inside HSV type 1 capsids, the viral genome probably starts to associate with histones after being transported from infecting virions into the host nucleus. Promoter regions of all gene classes (immediate early, early, and late) bind with histone proteins at the start of viral gene expression. However, after viral DNA replication initiates, histones appear not to associate with newly synthesized viral genomes.  相似文献   

9.
10.
The aquatic birnavirus induces mitochondria-mediated cell death in fish; however, the molecular mechanism remains unknown. In the present study, we demonstrated that aquatic birnavirus-induced mitochondria-mediated cell death is regulated by the anti-apoptotic Bcl-2 family member, zfBcl-xL, which is anti-apoptotic and enhances host cell viability. First, CHSE-214 cells carrying EGFP-zfBcl-xL fused genes were selected, established in culture, and used to examine the involvement of zfBcl-xL in host cell protection from the effects of viral infection. EGFP-zfBcl-xL was found to prevent infectious pancreatic necrosis virus (IPNV)-induced phosphatidylserine exposure up to 40% at 12 h and 24 h post-infection (p.i.), block IPNV-induced loss of mitochondrial membrane potential (ΔΨm), and enhance host viability at the middle and late replication stages. In addition, zfBcl-xL overexpression prevented IPNV-induced caspase-9 activation up to 25% and 85% at the middle (12 h p.i.) and late (24 h p.i.) replication stages without affecting expression of viral proteins such as VP3 (as a viral death protein) protein. In the present study, we demonstrated that aquatic birnavirus-induced cell death is prevented by the anti-apoptotic Bcl-2 family member, zfBcl-xL, which enhances host cell viability through blockage of mitochondrial disruption and caspase-9 activation.  相似文献   

11.
12.
Gamma interferon (IFN-gamma)-induced nitric oxide synthase (iNOS) and nitric oxide (NO) production in the murine macrophage-like RAW 264.7 cells were previously shown to inhibit the replication of the poxviruses vaccinia virus (VV) and ectromelia virus and herpes simplex virus type 1. In the current study, we performed biochemical analyses to determine the stage in the viral life cycle blocked by IFN-gamma-induced NO. Antibodies specific for temporally expressed viral proteins, a VV-specific DNA probe, and transmission electron microscopy were used to show that the cytokine-induced NO inhibited late protein synthesis, DNA replication, and virus particle formation but not expression of the early proteins analyzed. Essentially similar results were obtained with hydroxyurea and cytosine arabinoside, inhibitors of DNA replication. Enzymatically active iNOS was detected in the lysates of IFN-gamma-treated but not in untreated RAW 264.7 cells. The IFN-gamma-treated RAW 264.7 cells which express iNOS not only were resistant to productive infection but also efficiently blocked the replication of VV in infected bystander cells of epithelial origin. This inhibition was arginine dependent, correlated with nitric production in cultures, and was reversible by the NOS inhibitor N omega-monomethyl-L-arginine.  相似文献   

13.
Innate immune recognition of virus-infected cells includes NK cell detection of changes to endogenous cell-surface proteins through inhibitory receptors. One such receptor system is the NK cell receptor protein-1B (NKR-P1B) and its ligand C-type lectin-related-b (Clr-b). NKR-P1B and Clr-b are encoded within the NK cell gene complex, a locus that has been linked to strain-dependent differences in susceptibility to infection by poxviruses. In this study, we report the impact of vaccinia virus (VV) and ectromelia virus infection on expression of Clr-b and Clr-b-mediated protection from NK cells. We observed a loss of Clr-b cell-surface protein upon VV and ectromelia virus infection of murine cell lines and bone marrow-derived macrophages. The reduction of Clr-b is more rapid than MHC class I, the prototypic ligand of NK cell inhibitory receptors. Reduction of Clr-b requires active viral infection but not expression of late viral genes, and loss of mRNA appears to lag behind loss of Clr-b surface protein. Clr-b-mediated protection from NK cells is lost following VV infection. Together, these results provide the second example of Clr-b modulation during viral infection and suggest reductions of Clr-b may be involved in sensitizing poxvirus-infected cells to NK cells.  相似文献   

14.
15.
16.
17.
In cells infected by influenza virus type A, host protein synthesis undergoes a rapid and dramatic shutoff. To define the molecular mechanisms underlying this selective translation, a transfection/infection protocol was developed utilizing viral and cellular cDNA clones. When COS-1 cells were transfected with cDNAs encoding nonviral genes and subsequently infected with influenza virus, protein expression from the exogenous genes was diminished, similar to the endogenous cellular genes. However, when cells were transfected with a truncated influenza viral nucleocapsid protein (NP-S) gene, the NP-S protein was made as efficiently in influenza virus infected cells as in uninfected cells, showing that the NP-S mRNA, although expressed independently of the influenza virus replication machinery, was still recognized as a viral and not a cellular mRNA. Northern blot analysis demonstrated that the selective blocks to nonviral protein synthesis were at the level of translation. Moreover, polysome experiments revealed that the translational blocks occurred at both the initiation and elongation stages of cellular protein synthesis. Finally, we utilized this transfection/infection system as well as double infection experiments to demonstrate that the translation of influenza viral mRNAs probably occurred in a cap-dependent manner as poliovirus infection inhibited influenza viral mRNA translation.  相似文献   

18.
19.
The infectious cycles of viruses are known to cause dramatic changes to host cell function. The development of microarray technology has provided means to monitor host cell responses to viral infection at the level of global changes in mRNA levels. We have applied this methodology to investigate gene expression changes caused by a small, icosahedral, single-stranded-RNA phage, PRR1 (a member of the Leviviridae family), on its host, Pseudomonas aeruginosa, at different times during its growth cycle. Viral infection in this system resulted in changes in expression levels of <4% of P. aeruginosa genes. Interestingly, the number of genes affected by viral infection was significantly lower than the number of genes affected by changes in growth conditions during the experiment. Compared with a similar study that focused on the complex, double-stranded-DNA bacterial virus PRD1, it was evident that there were no universal responses to viral infection. However, in both cases, translation was affected in infected cells.  相似文献   

20.
Vaccinia virus (vv), a member of the poxvirus family, is unique among most DNA viruses in that its replication occurs in the cytoplasm of the infected host cell. Although this viral process is known to occur in distinct cytoplasmic sites, little is known about its organization and in particular its relation with cellular membranes. The present study shows by electron microscopy (EM) that soon after initial vv DNA synthesis at 2 h postinfection, the sites become entirely surrounded by membranes of the endoplasmic reticulum (ER). Complete wrapping requires ~45 min and persists until virion assembly is initiated at 6 h postinfection, and the ER dissociates from the replication sites. [(3)H]Thymidine incorporation at different infection times shows that efficient vv DNA synthesis coincides with complete ER wrapping, suggesting that the ER facilitates viral replication. Proteins known to be associated with the nuclear envelope in interphase cells are not targeted to these DNA-surrounding ER membranes, ruling out a role for these molecules in the wrapping process. By random green fluorescent protein-tagging of vv early genes of unknown function with a putative transmembrane domain, a novel vv protein, the gene product of E8R, was identified that is targeted to the ER around the DNA sites. Antibodies raised against this vv early membrane protein showed, by immunofluorescence microscopy, a characteristic ring-like pattern around the replication site. By electron microscopy quantitation the protein concentrated in the ER surrounding the DNA site and was preferentially targeted to membrane facing the inside of this site. These combined data are discussed in relation to nuclear envelope assembly/disassembly as it occurs during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号