首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of two putrescine analogs were studied on hepatic polyamine synthesis and cell proliferation, both of which were stimulated by food intake. Trans-1, 4-diamino-2-butene (diaminobutene), which is a potent competitive inhibitor of ornithine decarboxylase [EC 4.1.1.17] (ODC), repressed the induction of ODC and effectively inhibited the accumulation of putrescine in rat liver which was induced by the feeding of dietary protein. Unexpectedly, diaminobutene did not suppress DNA synthesis and mitotic activity in rat liver, suggesting that it can mimic the role of putrescine in cell proliferation. 1,3-Diaminopropane effectively repressed the induction of ODC caused by food intake and also suppressed DNA synthesis and mitotic activity without affecting the accumulation of RNA or protein. The suppression of mitotic activity by 1,3-diaminopropane was reversed by a single injection of putrescine, spermidine, spermine, or diaminobutene. It was concluded that rapid accumulation of polyamines, especially putrescine, was a prerequisite for the later enhancement of DNA synthesis and cell proliferation in rat liver caused by food intake.  相似文献   

2.
Different stages of liver regeneration are regulated by a variety of factors such as the liver growth associated protein ALR, augmenter of liver regeneration. Furthermore, small molecules like polyamines were proven to be essential for hepatic growth and regeneration. Therefore, using primary human hepatocytes in vitro we investigated the effect of ALR on the biosynthesis of polyamines. We demonstrated by HPLC analysis that recombinant ALR enhanced intracellular hepatic putrescine, spermidine, and spermine levels within 9-12h. The activation of polyamine biosynthesis was dose dependent with putrescine showing the strongest increase. Additionally, ALR treatment induced mRNA expression of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, both key enzymes of polyamine biosynthesis. Further, ALR induced c-myc mRNA expression, a regulator of ODC expression, and therefore we assume that ALR exerts its liver regeneration augmenting effects through stimulation of its signalling pathway leading in part to enhanced polyamine synthesis.  相似文献   

3.
An experiment was conducted to determine the effect of feeding ornithine in combination with alpha-aminoisobutyric acid (AIB), an inhibitor of arginase, on the regulation of polyamine synthesis in chicks. A total of 48 chicks with genetically elevated renal arginase activity was fed diets containing crystalline amino acids and 1% AIB with or without 2% ornithine. Feeding AIB reduced renal arginase activity, while renal and hepatic ornithine decarboxylase (ODC) activity increased. Feeding AIB plus ornithine caused no further reduction in renal arginase activity compared with that in chicks fed the AIB-supplemented diet. Renal and hepatic ODC activities, however, fell to below control levels. Renal, hepatic, and breast muscle ornithine concentrations increased substantially when ornithine was fed. AIB plus ornithine increased renal putrescine and spermidine concentrations. It was concluded that AIB could partially overcome the ornithine-induced inhibition of ODC activity. These findings support the hypothesis that dietary manipulation of precursor amino acids of polyamines in the presence of metabolites that induce ODC activity can influence tissue polyamine concentrations.  相似文献   

4.
Putrescine (1,4-diaminobutane) is the simplest of the mammalian polyamines. These are small, positively charged molecules which are essential for cell growth and are thought to play a role in regulation of anabolic events such as synthesis of DNA, RNA, and protein. Recent reports have indicated the potential for dietary precursor amino acids of putrescine to alter tissue putrescine concentrations. The current study was conducted to determine the physiologic significance of these effects by feeding up to flooding doses of putrescine to determine any influence on whole body growth and polyamine metabolism. A total of 96 chicks were fed purified crystalline amino acid diets containing 0.0, 0.2, 0.4, 0.6, 0.8, or 1.0% purified putrescine (four birds per pen, four pens per diet) for 14 days. The feeding of 0.2% putrescine increased growth rate beyond that of controls while further supplements reduced growth and were toxic when 0.8 and 1.0% putrescine were fed. Hepatic and muscle concentrations of ornithine increased with dietary putrescine while the effect in kidney was much less. Putrescine concentrations in liver, kidney, and muscle rose when 0.4% putrescine or more was fed. This effect was particularly obvious in muscle in which there were also increases in the concentrations of spermidine and spermine. In a subsequent similar experiment, putrescine was fed at 0.0, 0.1, 0.2, 0.3, 0.4, or 0.5% to determine the effect on the activities of the key enzymes regulating polyamine synthesis. The feeding of putrescine at even 0.1% caused a rapid reduction in hepatic ornithine decarboxylase activity while S-adenosylmethionine decarboxylase and arginase activities were not influenced by diet. It was concluded that excess tissue putrescine can be toxic to whole organisms but small, orally administered doses of this metabolite can promote growth.  相似文献   

5.
An occurrence and a magnitude of alcoholic liver diseases depend on the balance between ethanol-induced injury and liver regeneration. Like ethanol, polyamines including putrescine, spermidine, and spermine modulate cell proliferation. Thus, the purpose of this study was to evaluate the relationship between effect of ethanol on hepatocyte (HC) proliferation and polyamine metabolism using the HepaRG cell model. Results showed that ethanol effect in proliferating HepaRG cells was associated with a decrease in intracellular polyamine levels and ornithine decarboxylase (ODC) activity. Ethanol also induced disorders in expression of genes coding for polyamine-metabolizing enzymes. The α-difluoromethyl ornithine, an irreversible inhibitor of ODC, amplified ethanol toxicity on cell viability, protein level, and DNA synthesis through accentuation of polyamine depletion in proliferating HepaRG cells. Conversely, putrescine reversed ethanol effect on cell proliferation parameters. In conclusion, this study suggested that ethanol effect on HC proliferation was closely related to polyamine metabolism and that manipulation of this metabolism by putrescine could protect against the anti-proliferative activity of ethanol.  相似文献   

6.
7.
This study was performed to determine whether intestinal luminal polyamine concentrations are affected by a high soy protein diet when compared with a high casein diet or a normoprotein casein diet. We also determined the effects of these diets, with differences in polyamines content, on mucosal polyamines and ornithine decarboxylase (ODC) activity to assess cell proliferation. Three groups of eight male Wistar rats were fed either a 50% soy protein diet, a 50% casein diet, or an 18% casein diet as a control. After 4 weeks of feeding, both intestinal content and mucosa were recovered. Polyamines were assayed by high performance liquid chromatography. ODC activity was measured by the release of (14)CO(2) from (14)C-L-ornithine. Luminal putrescine and cadaverine concentrations were higher in the jejunum than in the ileum, suggesting an absorptive process. The highest concentrations of intestinal polyamines were observed in rats fed the soy protein diet (P < 0.05). Only minor differences were observed in mucosal polyamines according to the diets. ODC activity was also higher in the intestinal mucosa of rats fed the high soy protein diet (P < 0.05). These results suggest that intestinal luminal polyamine concentrations and ODC activity are modulated by the dietary protein source.  相似文献   

8.
Levels of putrescine, spermidine, and spermine and their biosynthetic enzymes, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) were measured in the developing rabbit palate between day 14 and day 18 of gestation. DNA, RNA, and protein synthesis were also measured during this time period to determine if a correlation exists between polyamine biogenesis and macromolecular synthesis. ODC activity was found to be twice as high on day 14 as on the succeeding days of gestation, while SAMDC activity did not change significantly. Levels of putrescine and spermine were higher on day 14 by 22% and 30%, respectively, than levels on day 18. Spermidine concentration did not change. DNA synthesis remained relatively constant between days 14 and 18 of gestation, suggesting that there is no peak in cell proliferation during this period. RNA synthesis was elevated significantly on day 14 and protein synthesis was significantly higher on both days 14 and 16. This data indicates that there is no correlation between polyamine synthesis and cell proliferation during this period of palatal development, but polyamines could play a regulatory role in RNA and/or protein synthesis.  相似文献   

9.
The administration of sulfobromophthalein (BSP, 0.5 mmol/kg, ip.) increased ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activities to 30-fold and 5-fold, respectively, of the controls at 12 hr in the liver of rats. Parallel to the increase in ODC, there was an increase in hepatic putrescine content. However, spermine content tended to decrease. BSP increased ODC and SAMDC activities and putrescine content, but decreased spermine content, in a dose-dependent manner. Pretreatment of rats with actinomycin D and cycloheximide almost completely blocked the BSP-mediated increase of ODC and SAMDC activities. Pretreatment with glutathione (GSH) failed to inhibit BSP-mediated increase of ODC and SAMDC activities. In addition, the administration of BSP-GSH conjugate (0.5 mmol/kg, iv.) did not produce the increase of ODC and SAMDC activities. Pretreatment with phenobarbital and 3-methylcholanthrene did not inhibit BSP-mediated increase of ODC and SAMDC. The results indicate that BSP could cause changes in hepatic polyamine content due to the induction of ODC and SAMDC.  相似文献   

10.
Trans-Stilbene oxide (TSO, 2 mmol/kg, ip.) induced ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) to 60-fold and 5-fold of the controls, respectively, in the liver of rats. Parallel to ODC induction, there was a marked increase in putrescine content to 50-fold of the control levels. Cis-Stilbene oxide (CSO), a stereoisomer of TSO, also produced the induction of ODC and SAMDC and the increase in putrescine content. There was no difference in the ability to induce ODC and SAMDC between TSO and CSO with respect to the extents of induction and the time needed to reach maximal levels. Trans-Stilbene (TS), a mother compound of TSO, did not show such an effect on ODC, while cis-stilbene (CS) induced both ODC and SAMDC. Treatment with glutathione inhibited TSO- and CSO-mediated induction of ODC and SAMDC. These findings add new information concerning the abilities of TSO, CSO and CS on hepatic polyamine metabolism.  相似文献   

11.
The polyamines (putrescine, spermidine, and spermine) are synthesized by almost all organisms and are universally required for normal growth. Ornithine decarboxylase (ODC), an initial enzyme of polyamine synthesis, is one of the most highly regulated enzymes of eucaryotic organisms. Unusual mechanisms have evolved to control ODC, including rapid, polyamine-mediated turnover of the enzyme and control of the synthetic rate of the protein without change of its mRNA level. The high amplitude of regulation and the rapid variation in the level of the protein led biochemists to infer that polyamines had special cellular roles and that cells maintained polyamine concentrations within narrow limits. This view was sustained in part because of our continuing uncertainty about the actual biochemical roles of polyamines. In this article, we challenge the view that ODC regulation is related to precise adjustment of polyamine levels. In no organism does ODC display allosteric feedback inhibition, and in three types of organism, bacteria, fungi, and mammals, the size of polyamine pools may vary radically without having a profound effect on growth. We suggest that the apparent stability of polyamine pools in unstressed cells is due to their being largely bound to cellular polyanions. We further speculate that allosteric feedback inhibition, if it existed, would be inappropriately responsive to changes in the small, freely diffusible polyamine pool. Instead, mechanisms that control the amount of the ODC protein have appeared in most organisms, and even these are triggered inappropriately by variation of the binding of polyamines to ionic binding sites. In fact, feedback inhibition of ODC might be maladaptive during hypoosmotic stress or at the onset of growth, when organisms appear to require rapid increases in the size of their cellular polyamine pools.  相似文献   

12.
Synthesis and uptake are two important regulated mechanisms by which eukaryotic cells maintain polyamine levels. The role that loss of synthesis and/or uptake regulation plays in mediating putrescine toxicity was investigated by comparing toxicity in an ornithine decarboxylase (ODC)-deficient Chinese hamster ovary cell line (C55.7) with a functional putrescine transport system and an ODC-overproducing rat hepatoma cell line (DH23b), which are transport regulation deficient. When C55.7 cells were transfected with either mouse ODC (M) or trypanosome ODC (Tb), intracellular putrescine content increased slightly in C55.7(Tb-ODC), compared to C55.7(M-ODC), due to the lack of response of Tb-ODC to polyamine regulation. The increase in putrescine content resulting from loss of ODC regulation had no impact on cell growth and viability. When the feedback repression of polyamine uptake was blocked with cycloheximide, C55.7 cells transfected with either ODC construct accumulated very high levels of putrescine from the medium, and underwent apoptosis in a putrescine dose-dependent manner. A similar correlation of deregulated putrescine uptake and increased apoptotic cells was observed in DH23b cells. These data demonstrate that loss of feedback regulation on the polyamine transport system, but not ODC activity, is sufficient to induce apoptosis. Thus, downregulation of the transport system is necessary to prevent accumulation of cytotoxic putrescine levels in rodent cells.  相似文献   

13.
The biological activity of selenium is known to depend on its chemical form. In this study, eight forms of selenium that differed in oxidation state or degree of methylation were studied for their acute effects on the activities of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMet DC) and on the concentrations of the polyamines putrescine, spermidine, and spermine in the liver. The polyamine pathway was studied because it is involved in the control of cell growth and in the cell's response to trophic, carcinogenic, and toxic stimuli, activities that selenium has been reported to affect. Female Sprague Dawley rats were administered 12 mumol Se/kg body weight via intraperitoneal injection and were sacrificed six hours later. Injection of sodium selenate, sodium selenite, selenomethionine, Se-methylselenocysteine, selenobetaine, and selenobetaine methyl ester resulted in significant increases in liver selenium, whereas injection of dimethylselenoxide and trimethylselenonium chloride did not. ODC activity and AdoMet DC activity were induced by those selenium compounds that also increased liver selenium content, but the magnitude of enzyme induction by those compounds was not correlated with the hepatic concentration of total selenium determined fluorometrically. Furthermore, the induction of ODC activity by the various forms of selenium did not result in concomitant increases in putrescine, spermidine, and spermine except in the case of selenite. Given that alterations in the metabolism of selenium are induced when the level of tissue selenium is elevated and that the relative abundance of various selenometabolites can be affected by the point of entry of selenium into intermediary metabolism, these data suggest that the changes that were observed in enzyme activities and polyamine levels are likely to be associated with the accumulation of a specific metabolite of selenium. The relevance of these findings to elucidation of the biological activities attributable to various forms of selenium is under investigation.  相似文献   

14.
The objective of this study was to evaluate induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, and subsequent polyamine accumulation in interleukin-2 (IL-2)- and interleukin-3 (IL-3)-dependent growth. The CTLL-20 and FDC-P1 cell lines, which have been shown to be absolutely dependent on IL-2 and IL-3, respectively, were used in these studies. The CTLL-20 and FDC-P1 cells each had different temporal patterns of ODC induction following lymphokine stimulation. ODC levels increased rapidly in the FDC-P1 cells, peaking 4 hr after stimulation with IL-3. In contrast, peak ODC activity in the CTLL-20 cells occurred 18 hr following stimulation with IL-2 and reached eightfold higher levels than those observed in the FDC-P1 cells. Treatment with D,L-alpha-difluoromethylornithine X HCl X H2O (DFMO), a specific irreversible inhibitor of ODC activity, completely abrogated lymphokine-dependent ODC induction in both the CTLL-20 and FDC-P1 cell lines. Similarly, intracellular levels of the polyamines putrescine and spermidine were reduced in both cell lines following DFMO treatment. DFMO treatment reduced both IL-2- and IL-3-dependent proliferation in a dose-dependent manner. However, this inhibition could be reversed by the addition of exogenous putrescine. DFMO treatment had no effect on cell viability. Polyamine-depleted CTLL-20 and FDC-P1 cells showed decreased absorption of IL-2 and IL-3 activity, respectively. However, the addition of exogenous putrescine restored the ability of the cells to absorb the appropriate lymphokine. These data are the first to demonstrate that ODC induction and polyamine biosynthesis are required in lymphokine dependent growth.  相似文献   

15.
Changes in ornithine decarboxylase (ODC) activity and in polyamine contents of the rat thyroid were studied under various experimental conditions. Methylthiouracil (MTU) treatment produced several-fold increases in the thyroid ODC activity and in the content of putrescine, spermidine and spermine within a week. While serum thyrotropin (TSH) levels increased gradually up to 3 weeks, the content of both putrescine and spermidine tended to reach a plateau after 2 weeks of the goitrogen treatment; spermine content continued to increase progressively for 3 weeks. Discontinuance of MTU at 7 days resulted in a rapid decline in the elevated thyroid ODC activity, followed by a diminution of putrescine, spermidine and RNA contents. Thyroidal putrescine, spermidine and RNA responded more sensitively to both introduction and withdrawal of TSH stimulation than thyroidal spermine and DNA. Excess iodide, having no effect on the basal level of thyroid ODC, suppressed the MTU-induced increase in this enzyme activity without affecting circulating TSH, thyroxine (T4) and triiodothyronine (T3) levels. There was a significant negative correlation between the ODC activity and intrathyroidal concentration of iodine in MTU-pretreated rats. Theophylline increased the thyroid weight and ODC activity when given to rats fed with a subeffective dose of MTU. Analyses of serum TSH, T4, T3 and of thyroidal iodine revealed that TSH-induced thyroid ODC activity was suppressed by increased circulating thyroid hormones and/or intrathyroidal iodine. Furthermore, it was suggested that thyroid hormones and excess iodide acted directly on the thyroid to alter polyamine biosynthesis, possibly by changing the responsiveness of the gland to TSH.  相似文献   

16.
Definition of the cellular events involved in the production of collagenase by macrophages following activation has revealed prostaglandin E2 (PGE2)- and cAMP-dependent steps. Since ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, is regulated by cAMP and is associated with certain aspects of protein synthesis, the potential role of this enzyme and its polyamine product, putrescine, in collagenase synthesis was examined. Lipopolysaccharide (LPS) activation of macrophages resulted in a maximal ODC response after 6 to 9 h with a 10- to 12-fold elevation in enzyme activity. This elevation in ODC appeared to be regulated by PGE2 since indomethacin inhibited LPS-induced macrophage ODC levels by 70%. Associated with the indomethacin-mediated inhibition of ODC was a loss of collagenase synthesis. Furthermore, partial restoration of collagenase production in indomethacin-inhibited cultures could be achieved by the addition of putrescine. In additional studies alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, also inhibited collagenase production when added to LPS-treated macrophages. This inhibition by DFMO could be reversed by the exogenous addition of putrescine. These findings demonstrate that the ODC pathway is an important intracellular component in the sequence of events that lead to macrophage collagenase synthesis.  相似文献   

17.
Polyamines (putrescine, spermidine, and spermine) are normal cellular constituents able to modulate cellular proliferation and differentiation in a number of tissues and cell types. This investigation explores the response of murine embryonic palate mesenchymal (MEPM) cells to epidermal growth factor (EGF) in terms of biosynthesis of putrescine and its transport across the plasma membrane and tests the hypothesis that polyamine transport can serve as an alternative mechanism (other than biosynthesis) for elevating intracellular polyamines during stimulation of MEPM cellular proliferation. MEPM cells treated with EGF were stimulated to proliferate and showed a dose- and time-dependent stimulation of ornithine decarboxylase (ODC) which was maximal at 4-6 hours. EGF also stimulated the initial rate of putrescine transport in a dose- and time-dependent manner. This stimulation was found to be maximal 3 hours after treatment and specific for the putrescine transport system. The kinetic parameters of putrescine transport shifted from 2.52 microM (Km) and 23.6 nmol/mg protein/15 minutes (Vmax) in nonstimulated cells to 4.48 microM (Km) and 39.8 nmol/mg protein/15 minutes (Vmax) in EGF-treated cells. This kinetic shift did not require de novo protein or RNA synthesis, as cycloheximide (10 micrograms/ml) and actinomycin D (50 micrograms/ml) had little effect on the ability of EGF to stimulate the initial rate of putrescine uptake. The rate of transport, however, was found to be inversely related to cell density. The addition of exogenous putrescine concomitantly with EGF blocked the induction of ODC, while in the presence of difluoromethylornithine (DFMO) (irreversible inhibitor of ODC) the initial rate of putrescine transport remained elevated throughout the time course studied. This stimulation of putrescine uptake caused by polyamine deprivation was reversed by exogenous putrescine and Ca++ while alpha-aminoisobutyric acid (AIB) further stimulated the rate of uptake. EGF's ability to stimulate cellular DNA synthesis was inhibited by DFMO. If DFMO-treated cells were stimulated with EGF in the presence of exogenous putrescine, this stimulatory effect was preserved. These studies indicate that the rate of polyamine transportation is highly responsive to a signal which initiates biosynthesis of polyamines. Further, this transportation system provides a compensatory mechanism allowing the cell to increase intracellular levels of polyamines when environmental conditions inhibit biosynthesis or when polyamines are abundant.  相似文献   

18.
1. When injected i.p., sodium selenite promoted a marked increase of rat liver ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activities; when administered with the diet for 6 weeks, a less marked increase in liver ODC was observed, whereas SAMDC was not significantly changed. 2. Protein synthesis was involved in the observed modifications. The rate of ODC inactivation was also changed. 3. ODC increase was accompanied by an enhanced putrescine concentration in liver. 4. A marked increase of ODC, accompanied by an enhancement of putrescine, was promoted by selenite (i.p.) also in chicken liver, together with an enhancement of glutathione concentration. Spermidine acetyltransferase (SAT) was also increased. 5. In the bursa of Fabricius, SAT activity was also increased, whereas ODC was decreased. However the expected modifications in polyamine concentration were not observed. 6. Decrease of ODC activity in the bursa was not due to an antizyme. 7. In vitro, selenite concentrations known to inhibit cell proliferation (greater than 1 microgram/ml) inhibited both ODC and SAT activities; at lower concentration, SAT activity was enhanced.  相似文献   

19.
Ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and thymidine kinase (TK) activities and polyamine concentrations on the kidneys of male castrated rats were studied following sc injection of estradiol. Estradiol caused an 11-fold increase in ODC activity 24 hours after administration. SAMDC activity doubled but TK activity decreased by two-thirds 2 days after estradiol treatment. The concentrations of polyamines, especially putrescine, showed sharp elevations 2 days following estradiol treatment, 1 day after the peak of ODC activity. The increase in ODC activity was suppressed by cycloheximide and by actinomycin D. Estradiol and diethylstilbestrol (DES), but not progesterone increased ODC activity. Estradiol suppressed ODC activities of liver, thymus, adrenal glands, testes and prostate. A specific estradiol-binding protein was demonstrated in the rat kidney. The dissociation constant (Kd) was 1.64 × 10?10 M and numbers of binding sites were 31 fmoles/mg protein. Correlation between the binding of estradiol to the cytosol protein and elevation of ODC by estradiol was observed.  相似文献   

20.
Increased cellular polyamine levels are thought to be essential for epidermal keratinocyte proliferation. However, a number of studies report that the induction of keratinocyte proliferation and of ornithine decarboxylase, the rate-limiting enzyme of putrescine, spermidine and spermine biosynthesis, is not concordantly expressed. The relationship between epidermal keratinocyte polyamine synthesis and proliferation was studied in neonatal mouse keratinocyte cultures using specific inhibitors of ODC activity to decrease the intracellular polyamine levels. The ODC inhibitors alpha-methyl ornithine (alpha-Me-Orn), alpha-hydrazino ornithine (alpha-HO) and difluoro-alpha-methylornithine (alpha-DFMO) did not significantly inhibit epidermal keratinocyte proliferation at 5 X 10(-3) to 10(-4) M concentrations. At these doses, only alpha-DFMO was seen to decrease (by 70%) the cellular levels of putrescine, but not of spermidine or spermine. Epidermal keratinocyte growth in the higher dose of 20 mM alpha-DFMO, however, did not decrease the cellular levels of putrescine. Polyamine analyses of the spent medium showed that growth in 10 mM alpha-DFMO decreased the normal epidermal cell transport of putrescine and spermidine into the medium. At 20 mM alpha-DFMO concentration, the keratinocytes actually transported, intracellularly, the putrescine and spermidine that are naturally found in the foetal bovine component of the growth medium. We conclude from these studies that epidermal keratinocyte polyamine levels are determined by both the rate of synthesis, and of the transport of these amines into the extracellular medium. Since epidermal keratinocytes actively maintain specific polyamine levels, it appears that these molecules are essential for epidermal keratinocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号