首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorimetric studies have been made on the content of adrenalin, noradrenaline, serotonin, dopamine, and tryptamine in the pial matter of the brain and spinal cord of fishes, birds and mammals including man. Using histochemical method with glyoxylic acid, biogenic monoamines were revealed in the adrenergic nerve fibers and monoaminocytes. Their total content in the pial matter of the brain is approximately the same in all vertebrates, being significantly lower in man. Higher concentration of adrenergic axons and lower amount of monoaminocytes in human subjects reveal the key role of the nervous influences in regulation of hemodynamics of the brain.  相似文献   

2.
Summary The pineal gland of the rat receives a rich nervous supply originating from the superior cervical ganglia. These fibers contain serotonin in addition to their neurotransmitter, noradrenaline. Cytochemical studies at the ultrastructural level have shown that both amines are present in the cores of the granular vesicles that are characteristic of these nerves. It is presently shown that the bilateral electrical stimulation of the preganglionic fibers innervating the ganglia markedly reduces the number of small sites reacting cytochemically for both noradrenaline and serotonin, these sites corresponding to the cores of small granular vesicles, while the larger reactive sites (cores of large vesicles) remain unaltered. The vesicles are retained in nerve terminals after stimulation, as observed in conventionally processed tissues, although with altered sizes and shapes. Apart from these cytochemical and structural changes, nerve stimulation also reduces the endogenous noradrenaline content of the pineal gland. Thus, both noradrenaline and serotonin are released from their storage sites in pineal sympathetic nerves after electrical stimulation in vivo. This suggests the possibility that several substances with presumed transmitter or modulatory functions might be simultaneously released by nerve impulses from a given nerve terminal.  相似文献   

3.
2,5-Dimethoxy-4-methylamphetamine (DOM, "STP") is a potent hallucinogen, proposed to be a serotonin receptor agonist. Its effects have not previously been tested upon central neurons where serotonin is excitatory and serotonin antagonists are effective. Extracellular single unit recordings were obtained from facial motoneurons in anaesthetized rats, and drugs were applied from five-barrelled micropipettes by iontophoresis. Facial motoneurons were commonly silent. During subthreshold application of glutamate, firing could be induced by dopamine and DOM. As reported by others, serotonin and noradrenaline also excited facial motoneurons under these conditions. Methysergide antagonized responses to serotonin and DOM but not those to noradrenaline; methysergide could not usually discriminate between responses to serotonin and dopamine. Ketanserin reversibly antagonized (but could not discriminate between) responses to serotonin, dopamine, and noradrenaline. Chlorpromazine antagonized responses to dopamine at doses that did not alter serotonin-induced excitation, and responses to DOM were not reduced by doses of chlorpromazine, that had no local anaesthetic effect on action potentials elicited by DOM and serotonin. These results suggest that DOM is an agonist on at least one type of central serotonin receptor. This receptor may also be a ketanserin (5-HT2) binding site.  相似文献   

4.
Tricyclic antidepressants and nontricyclic serotonin (5-hydroxytryptamine) uptake blockers monophasically inhibit [3H]imipramine binding in human platelets. Similarly, serotonin and tryptamine inhibit the binding of [3H]imipramine in the low micromolar range and with a pseudo-Hill coefficient near unity. Dissociation of the [3H]imipramine receptor complex in the presence of uptake inhibitors follows first-order kinetics with a half-life of approximately 60 min. Although serotonin and tryptamine do not decrease [3H]imipramine binding when added under equilibrium conditions, simultaneous addition of serotonin or tryptamine with serotonin uptake inhibitors decreases the rate of ligand-receptor dissociation in a concentration-dependent manner. These data suggest a common site of action for serotonin, which is the substrate of the transporter system, and of tryptamine, its nonhydroxylated analog. This hypothesis is supported by the identification of a high-affinity (Km = 0.55 microM), saturable, and temperature-dependent uptake of [3H]tryptamine in human platelets. Uptake of [3H]tryptamine was inhibited potently by imipramine and nontricyclic serotonin uptake inhibitors with a potency similar to that observed for [3H]serotonin uptake. These data support the hypothesis that in platelets, [3H]imipramine, tricyclic, and nontricyclic serotonin uptake inhibitors bind to a common recognition site that is associated with the serotonin transporter but that differs from the substrate recognition site of the carrier through which serotonin and tryptamine exert a heterotropic allosteric modulation on [3H]imipramine binding.  相似文献   

5.
1. The administration of crude venom of the parotoid glands of the toad Bufo ictericus ictericus to the in situ (via abdominal vein) or isolated heart of this anuran causes both chronotropic and inotropic effects. 2. While under action of parotoid venom, the heart of the animal is insensitive to vagus nerve stimulation. 3. This blocking of vagal action is dose dependent and it is suggested that it results from a functional antagonism between the venom constituents and the acetylcholine liberated by the nerve endings on stimulation. 4. The venom constituents probably involved in this antagonism are catecholamines (adrenaline and noradrenaline), tryptamine derivatives (serotonin and bufotenidin) and genins (bufagin and bufotoxin), possibly also ATP. 5. Adrenaline, noradrenaline and serotonin, or a mixture of the three, mimic, at least partially, the blocking of vagal action caused by crude venom. 6. The blocking action of crude venom can be prevented by previously or simultaneously adding acetylcholine to the infused crude venom. This prevention is dose dependent. 7. The blocking action persists in the boiled venom and in the material dialysed from crude venom.  相似文献   

6.
The hippocampal formation (the hippocampus and the dentate fascia) of the rabbit was studied by histochemical fluorescent method of Falk to determine localization of monoaminergic terminals containing biogenic amines: noradrenalin, dophamine and serotonin. It was shown that monoaminenergic terminals in the hippocampus were in two zones of afferent terminations: in the zone of ending of the perforating way (str. lacunosum-moleculare of fields CA1 and CA2; str. moleculare of the dentate fascia) and in the subgranular zone of the hilum where a part of septofimbrial way terminated on granular neurons of the dentate fascia, the main cellular elements of the hipocampus (pyramidal, granular and basket cells of the hippocampus) did not contain biogenic amines.  相似文献   

7.
We showed expression of the tryptophan hydroxylase gene and of tryptophan hydroxylase protein immunoreactivity in mouse skin and skin cells. Extracts from skin and melanocyte samples acetylated serotonin to N-acetylserotonin and tryptamine to N-acetyltryptamine. A different enzyme from arylalkylamine N-acetyltransferase mediated this reaction, as this gene was defective in the C57BL6 mouse, coding predominantly for a protein without enzymatic activity. Serotonin (but not tryptamine) acetylation varied according to hair cycle phase and anatomic location. Serotonin was also metabolized to 5-hydroxytryptophol and 5-hydroxyindole acetic acid, probably through stepwise transformation catalyzed by monoamine oxidase, aldehyde dehydrogenase and aldehyde reductase. Activity of the melatonin-forming enzyme hydroxyindole-O-methyltransferase was notably below detectable levels in all samples of mouse corporal skin, although it was detectable at low levels in the ears and in Cloudman melanoma (derived from the DBA/2 J mouse strain). In conclusion, mouse skin has the molecular and biochemical apparatus necessary to produce and metabolize serotonin and N-acetylserotonin, and its activity is determined by topography, physiological status of the skin, cell type and mouse strain.  相似文献   

8.
Summary In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia ond only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

9.
The effects on regeneration of serotonin and analagous substances such as tryptamine, DMT, bufotenine, melatonin, auxin and gramine were studied on small pieces of D. tigrina. By comparison with results obtained in previous works with DOPA, α methyl DOPA and noradrenaline, and also with substances of the series of tetrahydrocannabinol it is shown that the normal morphogenetic action of the neurohormone is dependant of the presence of a free hydroxyl on a flat ring (phenol or indole) and of a free amine on the lateral chain of the molecule. Essays to detect the mechanism of the morphogenetic action did not allow to give any clear conclusion.  相似文献   

10.
M Ahonen 《Histochemistry》1991,96(6):467-478
In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia and only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

11.
Fluorimetric methods were used to determine adrenaline, dopamine, noradrenaline, serotonin and tryptamine in the pia mater of the brain and spinal cord of various vertebrates (fishes, birds, mammals) and of man. The histochemical method using glyoxylic acid showed the presence of biogenic monoamines in adrenergic nerve fibres and in the monoaminocytes. Their total amount in the pia mater is roughly the same, except in man, in whom it is significantly lower. From the higher adrenergic axon concentration on the one hand and the lower number of monoaminocytes on the other, it can be concluded that the neuronal factor has a more important role in the regulation of brain haemodynamics in man.  相似文献   

12.
A comparison of the distribution of brain monoamine neurons in several New World and Old World monkeys was undertaken using the Falck-Hillarp formaldehyde histofluorescence technique. The overall organization of the monoamine neurons was very similar in all species, although subtle variations were found. Catecholamine (noradrenaline and dopamine) and indoleamine (serotonin) cell bodies corresponding to groups A1–A7, A8–A10, and B1–B9, respectively were found throughout the brainstem. A few catecholamine (dopamine) cells equivalent to groups All and A12 in the diencephalon were also observed. Noradrenaline neurons, rather than those of the dopamine and serotonin systems, tended to be less numerous in the New World monkeys. Ascending catecholamine and indoleamine fiber bundles were observed in most monkeys. It is interesting that fibers corresponding to the “ventral noradrenaline bundle” appeared to be much finer in the common marmoset and tamarin than in other species. In addition, a substantial catecholamine (noradrenaline) innervation of the diencephalon was noted in all the Old World monkeys, while a much lower overall terminal density was apparent in the New World forms.  相似文献   

13.
The localization of catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT)], of serotonin (5-HT), and adrenocorticotropin (ACTH) in the pituitary of bullfrog (Rana catesbeiana), rat, hamster, and dog was examined by the immunofluorescence method. Many TH- and DBH-positive but PNMT-negative noradrenalin cells and 5-HT-positive serotonin cells were first observed in the pars distalis of the frog pituitary together with small numbers of ACTH-positive cells, in marked contrast to our previous findings that TH-positive but DBH-negative dopamine cells are rare in the anterior lobe of rat and dog pituitary. The entire population of cells of the pars intermedia showed a weak ACTH-like immunoreaction. Although most of these cells were TH- or 5-HT-negative, TH-positive but DBH-negative dopaminergic varicose fibers surrounded these cells. Among cells of the pars intermedia of the frog, 5-HT-positive cells with processes were also scattered. In the neural lobe, TH- and 5-HT-immunoreactive fibers were rarely seen.  相似文献   

14.
Using a monoclonal antibody against dopamine and a rabbit antiserum against serotonin, 5-methoxytryptamine or tryptamine, we were able to achieve the simultaneous localization of two amines in glutaraldehyde-fixed sections of rat dorsal raphe nuclei. In this staining procedure, the first antigen was localized using 3,3'-diaminobenzidine (DAB), while the second antigen was stained using the 1-naphthol basic dye (2-NBD) method. The two antigens were localized in different cells or structures. No overlap of the staining was observed, thus indicating that dopamine is not localized with serotonin, 5-methoxytryptamine or tryptamine.  相似文献   

15.
Y Cetin 《Life sciences》1992,50(18):1343-1350
Pancreata of guinea-pigs were investigated for the presence and cellular distribution of biogenic amines. Out of the established endocrine cell types only insulin (B-) cells contained immunoreactivity for serotonin and noradrenaline. However, the B-cells' content of both amines was quite variable. Serotonin was also confined to enterochromaffin (EC-) cells. No immunoreactivity for dopamine or histamine was present in any islet cell. Treatment of guinea-pigs with Ro-4-4602 led to a marked decrease of serotonin and noradrenaline in pancreatic endocrine cells. The present findings suggest that serotonin and noradrenaline are involved in the function of the endocrine pancreas, particularly of islet B-cells.  相似文献   

16.
Kang S  Kang K  Lee K  Back K 《Plant cell reports》2007,26(11):2009-2015
Serotonin is a well-known pineal hormone that in mammals plays a key role in mood. In plants, serotonin is implicated in several physiological roles such as flowering, morphogenesis, and adaptation to environmental changes. However, its biosynthetic enzyme in plants has not been characterized. Therefore, we measured the serotonin content and enzyme activity responsible for serotonin biosynthesis in rice seedlings. Tryptamine 5-hydroxylase (T5H), which converts tryptamine into serotonin, was found as a soluble enzyme that had maximal activity in the roots. The maximal activity of T5H was closely associated with the enriched synthesis of serotonin in roots. Tetrahydropterine-dependent T5H activity was inhibited by tyramine, tryptophan, 5-OH-tryptophan, and octopamine, but remained unaltered by dopamine in vitro. The tissues of rice seedlings grown in the presence of tryptamine exhibited a dose-dependent increase in serotonin in parallel with enhanced T5H enzyme activity. However, no significant increase in serotonin was observed in rice tissues grown in the presence of tryptophan, suggesting that tryptamine is a bottleneck intermediate substrate for serotonin synthesis.  相似文献   

17.
By means of incubation of slices in 2% solution of glyoxylic, acid adrenergic nervous structures and endocrine cells (APUD cells) have been studied in the ampule wall of the duodenal large papilla and in the lungs in 6 mature male rabbits. Topographic proximity of APUD cells and adrenergic nervous fibers is noted. Contents of serotonin and catecholamines in the structures mentioned have been investigated microfluorometrically. Simultaneous revealing of producers of monoamines make possible to suppose that serotonin and catecholamines get paracrinically from the APUD cells into terminals of the adrenergic nervous fibers.  相似文献   

18.
Rice leaves accumulate serotonin in response to infection by Bipolaris oryzae. The leaves of the sl mutant, which is deficient in the gene encoding tryptamine 5‐hydroxylase, accumulate tryptamine instead of serotonin upon infection by B. oryzae. Because tryptamine is a possible precursor of indole‐3‐acetic acid (IAA), we investigated the accumulation of IAA in sl leaves infected with B. oryzae. Liquid chromatography coupled with tandem mass spectrometry analysis indicated that IAA accumulated at approximately 1.5 μmol/gFW in the leaves of sl mutant. This accumulation was suppressed by 95% by the treatment with the tryptamine decarboxylase inhibitor, (S)‐α‐(fluoromethyl)tryptophan, at 100 μm , indicating that tryptamine served as the precursor of IAA. The accumulation of IAA was not reproduced by treatment with CuCl2 or by exogenous feeding of tryptamine. Furthermore, inoculation of Magnaporthe grisea induced only a lower level of IAA accumulation. On the other hand, B. oryzae produced IAA in culture media containing tryptamine. These findings strongly suggested that the metabolism of tryptamine by B. oryzae was responsible for IAA accumulation in the leaves of the sl mutant. Serotonin added to the culture media was also converted into 5‐hydroxyindole‐3‐acetic acid (5HIAA) at a rate similar to that of tryptamine. Considering that wild‐type rice leaves accumulate serotonin for defensive purposes, reducing the concentration of serotonin by conversion into 5HIAA may be significant as a detoxification process in the interaction between B. oryzae and rice.  相似文献   

19.
The immunohistochemical study revealed tyrosine hydroxylase (TH), dopamine -hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), serotonin, glutamate decarboxylase (GAD) and -aminobutyric acid (GABA) immunoreactivities in the mouse carotid body. TH and DBH immunoreactivities were found in almost all chief cells and a few ganglion cells, and in relatively numerous varicose nerve fibers of the carotid body. The histofluorescence microscopy showed catecholamine fluorescence in almost all chief cells. However, no PNMT immunoreactivity was observed in the carotid body. Serotonin, GAD and GABA immunoreactivities were also seen in almost all chief cells of the carotid body. From combined immunohistochemistry and fluorescence histochemistry, catecholamine and serotonin or catecholamine and GABA were colocalized in almost all chief cells. Thus, these findings suggest that noradrenaline, serotonin and GABA may be synthesized and co-exist in almost all chief cells of the mouse carotid body and may play roles in chemoreceptive functions.  相似文献   

20.
Abstract— Six endogenous substrates of monoamine oxidase (EC 1.4.3.4) (serotonin, l -norepinephrine, dopamine, tyramine, tryptamine and β -phenethylamine) were used separately and in pairs with human brain mitochondrial extracts. Apparent K 1 values were obtained from experiments in which only 1 of 2 substrates was isotopically labelled, and these values were compared with experimental K m values. β -Phenethylamine appears to be metabolized at enzyme active sites independent from those which bind serotonin. The substrate l -norepinephrine competes with serotonin for an enzyme site, but also may be catalysed at an additional site which is independent of serotonin binding. Experiments in which [14C]tryptamine was combined with [3E]serotonin indicated that tryptamine is a much more potent inhibitor of serotonin oxidation than was predicted from K m values. It is suggested that the competition among substrates of MA0 which is observed in uitro may have relevance to in uiuo mechanisms for control of biogenic amine concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号