首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of accumulation of nuclear and cytoplasmic poly(A) have been determined in sea urchin blastulas and gastrulas, stages when essentially all mRNA is synthesized de novo in the nucleus. A majority of the labeled poly(A) is found in the cytoplasmic fraction after a brief pulse. The ratio of radioactive AMP to adenosine in pulse-labeled nuclear, cytoplasmic, and polyribosomal poly(A) is considerably less than the number average length of the labeled poly(A), indicating that there is 3′-terminal addition of adenosine to previously synthesized poly(A). The size distribution of pulse-labeled, terminally elongated poly(A) in the cytoplasm is similar to that of the largest nuclear poly(A) rather than the steady-state size distribution of cytoplasmic poly(A), which is smaller and more heterogeneous. The most likely interpretation of these results is that there is a predominant 3′ terminal addition of short tracts of adenosine to poly(A) attached to nuclear RNA just before or during entrance of this RNA into the cytoplasm. In this respect, much of the 3′ terminal addition may be thought of as terminal completion of poly(A) synthesis.  相似文献   

2.
Polyadenylic acid on poliovirus RNA. II. poly(A) on intracellular RNAs.   总被引:40,自引:25,他引:15       下载免费PDF全文
The content, size, and mechanism of synthesis of 3'-terminal poly(A) on the various intracellular species of poliovirus RNA have been examined. All viral RNA species bound to poly(U) filters and contained RNase-resistant stretches of poly(A) which could be analyzed by electrophoresis in polyacrylamide gels. At 3 h after infection, the poly(A) on virion RNA, relicative intermediate RNA, polyribosomal RNA, and total cytoplasmic 35S RNA was heterogeneous in size with an average length of 75 nucleotides. By 6 h after infection many of the intracellular RNA's had poly(A) of over 150 nucleotides in length, but the poly(A) in virion RNA did not increase in size suggesting that the amount of poly(A) which can be encapsidated is limited. At all times, the double-stranded poliovirus RNA molecules had poly(A) of 150 to 200 nucleotides. Investigation of the kinetics of poly(A) appearance in the replicative intermediate and in finished 35S molecules indicated that poly(A) is the last portion of the 35S RNA to be synthesized; no nascent poly(A) could be detected in the replicative intermediate. Although this result indicates that poliovirus RNA is synthesized 5' leads to 3' like other RNA's, it also suggests that much of the poly(A) found in the replicative intermediate is an artifact possibly arising from the binding of finished 35S RNA molecules to the replicative intermediate during extraction. The addition of poly(A) to 35S RNA molecules was not sensitive to guanidene.  相似文献   

3.
Bulk ribonucleic acid (RNA) was isolated from mechanically disrupted ascospores of Saccharomyces cerevisiae. After two passes over an oligo (dT10) cellulose column, the portion which bound, called poly(A)(+), was characterized. It is heterodisperse in size with a mean molecular weight of approximately 4 X 10(5), but contains some species as large as 7 X 10(5). The base composition is similar to vegetative poly(A)(+) RNA. The polyadenylate segment is also heterogenous in size, ranging from 90 to 20 bases in length, with a peak at approximately 60 nucleotides in length. Pulse-labeling of asci with [3H-methyl]methionine yields two "caps," 7-methyl guanosine-5'-triphosphoryl-5'-adenosine (or guanosine) identical to that found in vegetative poly(A)(+) RNA. The poly(A)(+) RNA in spores is found in polyribosomes which are, on the average, smaller than vegetative ones. Long-term labeling studies indicate that the fraction of poly(A)(+) RNA in spores is similar to that in vegetative cells.  相似文献   

4.
Accumulation of polyadenylated mRNA during liver regeneration.   总被引:1,自引:0,他引:1  
V Atryzek  N Fausto 《Biochemistry》1979,18(7):1281-1287
Cytoplasmic and polysomal polyadenylated mRNA [poly(A)+-mRNA] increased by 120% prior to the onset of DNA synthesis during the regeneration of rat liver following partial hepatectomy. Despite this large change in cytoplasmic mRNA and an approximately 50% increase in total nuclear RNA, the amount of polyadenylated nuclear RNA increased by only 15--20% during this time. Neither the average size of nuclear or of cytoplasmic polyadenylated mRNA nor the length of their poly(adenylic acid) [poly(A)] tracts changed during liver regeneration. Polysomal poly-(A)+-mRNA increased proportionately more and at a faster rate than rRNA during the first day following partial hepatectomy. Normal livers contained a substantial proportion of cytoplasmic poly(A)+-mRNA not associated with polysomes but this proportion was not altered in 3-h regenerating liver. Thus, in regenerating liver, most preexisting cytoplasmic mRNA does not appear to be recruited into polysomes prior to the substantial increase in the amount of cytoplasmic poly(A)+-mRNA.  相似文献   

5.
6.
With the aid of a suitable thin layer chromatographic procedure, the N-6 methyl adenylic acid (m6A), content of a variety of 32P labeled RNA species from HeLa cells has been measured. Poly(A)-containing (poly(A)+) cytoplasmic RNA has on the average one m6Ap per 800 to 900 nucleotides. This value is independent of the length of the molecules. The proportion of m6Ap in poly(A)+ cytoplasmic RNA does not change between 4 and 18 hours of labeling with 32P, suggesting that the majority of the messenger RNA molecules may have a similar level of internal methylation regardless of their half-life. The non-polyadenylated, non-ribosomal cytoplasmic RNA fraction sedimenting from 10S TO 28S is less methylated with approximately one m6A per 2,700 nucleotides. Heterogeneous nuclear RNA molecules (DMSO treated) which sediment from 28S to 45S have approximately one m6Ap per 3,000 nucleotides. The hnRNA molecules sedimenting from 10S to 28S have one m6Ap per 1,800 nucleotides. Poly(A)+ nuclear RNA is enriched in m6A, containing 1 residue of m6A per 700 to 800 nucleotides, a value close to that obtained for the polyadenylated cytoplasmic RNA.  相似文献   

7.
The properties and function of rapidly-labelled nuclear RNA   总被引:1,自引:1,他引:0  
Donald Grierson  Simon Covey 《Planta》1976,130(3):317-321
Summary Nuclei were isolated from cultured cells of Acer pseudoplatanus L. previously pulse-labelled with [5-3H]uridine or [32P]phosphate and the properties of the rapidly-labelled RNA were studied. Polyacrylamide gel electrophoresis showed ribosomal RNA precursors and processing intermediates with molecular weights of 3.4, 2.5, 1.4 and 1×106 daltons, together with polydisperse RNA. The relative proportions of ribosomal RNA precursors and polydisperse RNA varied according to the length of the labelling period, but after 30 min approximately 90% of the radioactive RNA was polydisperse. The relationship between this polydisperse RNA and messenger RNA was investigated. The percentage of total nuclear RNA retained by chromatography on oligodeoxythymidylic acid-cellulose columns varied from 6% to 16% depending on the length of the labelling period. This RNA fraction, which has an adenylic acid content of approximately 45%, is assumed to represent RNA with polyadenylic acid sequences attached. A larger proportion of the nuclear polydisperse RNA lacked polyadenylic acid. Both types of polydisperse RNA were similar in size and during polyacrylamide gel electrophoresis migrated as broad peaks with an average molecular weight of approximately 106 daltons. The polydisperse nuclear RNA that lacks polyadenylic acid was found to be similar in nucleotide composition to ribosomal RNA and is assumed to represent growing chains of ribosomal precursor RNA. After short labelling times the majority of the radioactivity incorporated into nuclear RNA is present in molecules of this type. This suggests that the designation of pulse-labelled polydisperse RNA as messenger RNA or precursor to messenger RNA solely on the basis of rapid labelling and size heterogeneity is unsound. The average molecular weight of the polyadenylic acid-containing messenger RNA from the cytoplasm was less than that of the corresponding nuclear RNA (6 and 9×105 daltons respectively). This suggest either that the majority of the nuclear polyadenylic acid-containing RNA does not enter the cytoplasm, or if it does, that it first undergoes a reduction in size.Abbreviations rRNA ribosomal RNA - mRNA messenger - RNA poly(A), polyadenylic acid, poly(A) and poly(A) - RNA RNA with and without poly(A) sequences attached - poly(U) polyuridylic acid - oligo (dT)-cellulose cellulose with oligo deoxythymidylic acid covalently attached - C cytidylic acid - A adenylic acid - G guanylic acid - U uridylic acid  相似文献   

8.
In Saccharomyces cerevisiae the function of the RN A1 gene is believed to be required for the transport of newly synthesized mRNA from the nucleus to the cytoplasm. Nuclear poly(A)+ RNAs accumulate and cytoplasmic mRNAs decay after the temperature-sensitive (ts) rna1.1 mutant is shifted from 25 degrees C to 37 degrees C. In this study the 3' poly(A) upon poly(A)+ RNA synthesized after expression of rna1.1 was shown to be appreciably longer than the poly(A) normally present on yeast cytoplasmic mRNA. This increased poly(A) length is due to rna1.1, since it was found only in this mutant after a 25 degrees C to 37 degrees C heat shock, not an intragenic non-ts revertant of rna1.1, wild-type (RN A1+) cells or a RN A1+, rna2.1 mutant subjected to equivalent heat shocks. It may be an indication that the normal shortening of the poly(A) on mRNAs does not occur in the nucleus, but happens only with transport to the cytoplasm. Alterations in the mean size of poly(A) may be a relatively simple marker for mRNA transport defects.  相似文献   

9.
The effect of herpes simplex virus (HSV) infection of mRNA metabolism was examined in a system where the fate of specific RNA sequence can be assayed. Adenovirus type 5-transformed rat embryo cell line 107 synthesizes adenovirus-specific RNA (ad-RNA), which functions in the cytoplasm as mRNA. We have utilized ad-RNA as a model for mRNA metabolism, and in a preliminiary study we characterized ad-RNA in the nucleus and cytoplasm by hybridization to filter-bound adenovirus DNA. The results indicated the as-RNA accumulates in the nucleus and that cytoplasmic polyadenylic acid [poly(A)]-containing ad-RNA turns over with a half-life of a few hours. Pulse-chase experiments confirmed these observations and a half-life of about h was determined for the poly(A)-containing cytoplasmic ad-RNA. A second class of ad-RNA remains in the nucleus, where it turns over with a longer hlaf-life (about 24 h). The infection of 107 cells by HSV was restricted at 37 degree C, giving a burst size of 5 PFU per cell and allowing continued host DNA synthesis. Protein synthesis was inhibited greater than 50% by 7 h after infection, and total RNA synthesis was 50% inhibited by 4 h after infection. During the first 8 h after infection, HSV has little effect on the rate of synthesis of ad-RNA as determined by hybridization of nuclear RNA samples, but,during the same period, HSV inhibits the accumulation of poly(A)-containing ad-RNA in the cytoplasm. The degree of this inhibition increases steadily throughout this period and reaches 60% by 6.5 to 8 h after infection. Nosignificant effect was seen on the accumulation of total cellular poly(A)-containing RNA. It was concluded from these experiments that HSV infection alters the metabolism of ad-RNA so as to prevent the normal appearance of the poly(A)-containing mRNA in the cytoplasm. The result for ad-RNA may not represent the behavior of total cellular poly(A)-containing RNA under conditions where infection is restricted.  相似文献   

10.
Encephalomyocarditis (EMC) viral RNA was isolated from purified virus grown in Ehrlich ascites tumor cells. The viral RNA was found to contain polyadenylic acid [poly(A)] regions that were very heterogeneous in length. Chromatography of the EMC viral RNA on oligo(dT)-cellulose columns separated the RNA into three distinct fractions (peaks 1 to 3). Approximately 20% of the EMC viral RNA appeared as peak 1, 40% as peak 2, and 40% as peak 3. The RNA in each fraction appeared to be intact as shown by co-sedimentation with 35S unfractionated EMC viral RNA in SDS-sucrose density gradients. Approximately 95 to 100% of peaks 1 and 3, and 60 to 70% of peak 2, reappeared at the same elution position after rechromatography on oligo(dT)-cellulose. The RNA in peak 1 contained poly(A) with an average length of 16 nucleotides, peak 2 contained poly(A) with an average of 26 nucleotides, and peak 3 contained an average of 74 nucleotides in its poly(A) region. The distribution in the three fractions, as well as the average length of the poly(A) moieties, was relatively unaffected by changes in the cell suspension medium used during infection. Finally, each of the three viral RNA fractions was assayed for biological activity using an infectious RNA assay on L-cell monolayers. Infectivity of the viral RNA was found to increase with poly(A) length, with peak 3 viral RNA being approximately 10 times more infectious than peak 1 viral RNA.  相似文献   

11.
The ameboid stage of the amebo-flagellate Naegleria gruberi was found to synthesize two size classes of polynucleotides resistant to digestion with a mixture of ribonuclease A and T1. These two size classes were present in both the nucleus and the cytoplasm. Cells differentiating into flagellates were found to lose a variable amount of the smaller, nuclease-resistant fragment while synthesizing only the larger nuclease-resistant class. The adenosine to AMP ratio of the larger nuclease-resistant fragment was compatible with a 3′-terminal poly(A) sequence of 87 nucleotides average length. The smaller nuclease-resistant fragment was found to be rich in AMP (44–49%) but contained a substantial amount of other nucleotides. The smaller fragment was heterogeneous in size with an average length of 10–12 nucleotides as estimated by its elution from a DEAE column. Fractionation of RNA on oligo(dT) cellulose demonstrated that the large and small nuclease-resistant fragments were on different RNA molecules. Only the large poly(A) sequence was present in either cytoplasmic or nuclear RNA which bound to oligo(dT) cellulose. On the other hand, only the small nuclease resistant fragment was found in the unbound RNA from either nuclei or cytoplasm.  相似文献   

12.
The size range of poly(A)-containing RNA from Drosophila melanogaster embryos has been estimated by hybridization with 3H-labeled poly(U) and subsequent fractionation on sucrose gradients. The median size of nuclear poly(A)-containing RNA is about 30 S (6000 nucleotides), and the median size of cytoplasmic poly(A)-containing RNA is about 17 S (1800 nucleotides). The relationship of these sizes to messenger RNA needed to code for protein and to the length of DNA contained in a chromomere is discussed.Research grant support was provided by NIH (6M35558; HD-00266) and NSF (GB-30600).  相似文献   

13.
Using a differential extraction procedure which had previously been shown to yield one nucleic acid fraction enriched in cytoplasmic RNA and another enriched in nuclear RNA, we have been able to isolate two polyadenylated RNA populations from microplasmodia of Physarum polycephalum. The poly(A)-containing RNA from the cytoplasmic-enriched fraction accounts for approximately 1.2% of the cytoplasmic nucleic acid, has a number-average nucleotide size of 1339+/- 39 nucleotides, and has been shown, in a protein-synthesizing system in vitro, to be capable of directing the synthesis of peptides which have also been shown to be synthesized in vivo by microplasmodia. The poly(A)-containing RNA from the nuclear-enriched fraction has a number-average nucleotide size of 1533 +/- 104 nucleotides and represents a mixture of cytoplasmic and nuclear adenylated RNA molecules. Based upon these observations, we have identified the polyadenylated RNA isolated from the fraction enriched in cytoplasmic nuclei acid as Physarum poly(A)-containing messenger RNA.  相似文献   

14.
15.
S Falkenthal  J A Lengyel 《Biochemistry》1980,19(25):5842-5850
We have characterized the copia RNA in the cytoplasm of cultured Drosophila cells. Copia RNA was detected and purified by hybridization to DNA of the plasmid cDm 1142, which contains the copia sequence. A large fraction (2.2%) of the total cytoplasmic poly(A)+ RNA was found to be copia RNA. Cytoplasmic copia RNA displays all the characteristics expected for a messenger RNA. It possesses a poly(A) tract identical in length with that of total poly(A)+ cytoplasmic RNA. It is associated with polysomes and can be released from this association by treatment with EDTA. When purified copia RNA is added to an mRNA-dependent rabbit reticulocyte lysate, three polypeptides of 51000, 33000, and 21000 daltons are seen. We have not determined if these are different polypeptides or if the two smaller polypeptides are fragments of the 51000-dalton polypeptide. The half-life of copia cytoplasmic RNA was determined in pulse--chase experiments to be 9.5 h; this is 1.6 times longer than the half-life of the intermediate decay class of total poly(A)+ cytoplasmic RNA. These properties provide strong evidence that copia RNA functions in vivo as a messenger RNA.  相似文献   

16.
17.
Hybridization of [3H]polyuridylic acid to RNA isolated from Botryodiplodia theobromae pycnidiospores yielded an estimate of about 6.25 x 10(5) polyadenylate-containing RNA (poly A(+) RNA) molecules per dormant spore. The number increased about fourfold by the time of germ tube emergence at 3 h. The average size of this presumed mRNA was about 4.1 x 10(5) daltons (1275 nucleotides), with an average polyadenylate segment length of 26 nucleotides. Neither of these values changed significantly during germination. The earliest detectable (first 30 min of germination) de novo synthesized mRNA's were rapidly incorporated into polyribosomes. This newly synthesized, presumably functional, mRNA was composed of both poly A(+) RNA and polyadenylate-lacking RNA. The average sizes of the two polyribosomal mRNA subpopulations and the total poly A(+) RNA population were identical.  相似文献   

18.
Size and location of poly (A) in encephalomyocarditis virus RNA.   总被引:2,自引:1,他引:1       下载免费PDF全文
Encephalomyocarditis (EMC) virus RNA contains a covalently bound sequence of polyriboadenylic acid (poly(A). This was determined by two-dimensional gel electrophoresis of complete T1 and pancreatic RNase digests of formamidesucrose gradient-purified RNA and subsequent analysis of the product by alkaline hydrolysis. The size of the EMC virus genomic poly(A) sequence was estimated by formamide-polyacrylamide gel electrophoresis of the RNase-resistant product, or by [3H-]poly(U) hybridization to freshly purified virion RNA, to be, on average, 40 nucleotides in length. The evidence obtained from [3H-]isoniazid labelling and other experiments would indicate that the poly(A) sequence is located at the 3'-terminus of EMC virus RNA.  相似文献   

19.
Ribonucleic acid (RNA) extracted from Neurospora crassa has been fractionated by oligodeoxythymidylic acid [oligo(dT)]-cellulose chromatography into polyadenylated messenger RNA [poly(A) mRNA] and unbound RNA. The poly(A) mRNA, which comprises approximately 1.7% of the total cellular RNA, was further characterized by Sepharose 4B chromatography and polyacrylamide gel electrophoresis. Both techniques showed that the poly(A) mRNA was heterodisperse in size, with an average molecular weight similar to that of 17S ribosomal RNA (rRNA). The poly(A) segments isolated from the poly(A) mRNA were relatively short, with three major size classes of 30, 55, and 70 nucleotides. Gel electrophoresis of the non-poly(A) RNA indicated that it contained primarily rRNA and 4S RNA. The optimal conditions were determined for the translation of Neurospora mRNA in a cell-free wheat germ protein-synthesizing system. Poly(A) mRNA stimulated the incorporation of [14C]leucine into polypeptides ranging in size from 10,000 to 100,000 daltons. The RNA that did not bind to oligo(dT)-cellulose also stimulated the incorporation of [14C]leucine, indicating that this fraction contains a significant concentration of mRNA which has either no poly(A) or very short poly(A) segments. In addition, the translation of both poly(A) mRNA and unbound mRNA was inhibited by 7-methylguanosine-5'-monophosphate (m7G5'p). This is preliminary evidence for the existence of a 5'-RNA "cap" on Neurospora mRNA.  相似文献   

20.
CHARACTERIZATION OF POLY(A) SEQUENCES IN BRAIN RNA   总被引:5,自引:5,他引:0  
—Nuclear and polysomal brain RNA from the rabbit bind to Millipore filters and oligo(dT)-cellulose suggesting the presence of poly(A) sequences. The residual polynucleotide produced after RNase digestion of 32P pulse-labelled brain RNA is 95% adenylic acid and 200-250 nucleotides in length. After longer isotope pulses the polysomal poly(A) sequence appears heterodisperse in size and shorter than the nuclear poly (A). Poly(A) sequences of brain RNA are located at the 3′-OH termini as determined by the periodate-[3H]NaBH4 labelling technique. Cordycepin interferes with the processing of brain mRNA as it inhibits in vivo poly(A) synthesis by about 80% and decreases the appearance of rapidly labelled RNA in polysomes by about 45%. A small poly(A) molecule 10-30 nucleotides in length is present in rapidly labelled RNA. It appears to be less sensitive to cordycepin than the larger poly(A) and is not found in polysomal RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号