首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of secondary metabolites produced by waterlogged soils on net K(+), H(+), and Ca(2+) fluxes were studied in the mature zone of roots of two barley (Hordeum vulgare) cultivars contrasting in their waterlogging (WL) tolerance using the noninvasive microelectrode ion flux measuring technique. In WL-sensitive variety 'Naso Nijo', all three lower monocarboxylic acids (formic, acetic, and propionic acids) and three phenolic acids (benzoic, 2-hydroxybenzoic, 4-hydroxybenzoic acids) caused a substantial shift toward steady K(+) efflux, accompanied by an immediate net influx of H(+). Detrimental effects of secondary metabolites on K(+) homeostasis in root cells were absent in WL-tolerant 'TX' variety. Root treatment with Mn(2+) caused only a temporary K(+) loss that returned to the initial level 10 min after treatment. Phenolic acids slightly increased Ca(2+) influx immediately after treatment, while other metabolites tested resulted in transient Ca(2+) efflux from the root. In the long-term (24 h) treatment, all metabolites tested significantly reduced K(+) uptake and the adverse effects of phenolic acids were smaller than for monocarboxylic acids and Mn(2+). Treatment with monocarboxylic acids for 24 h shifted H(+) from net efflux to net influx, while all three phenolic acids did not cause significant effects compared with the control. Based on results of pharmacological experiments and membrane potential measurements, a model explaining the effects of secondary metabolites on membrane transport activity is proposed. We also suggest that plant tolerance to these secondary metabolites could be considered a useful trait in breeding programs.  相似文献   

2.
Low‐pH and Al3+ stresses are the major causes of poor plant growth in acidic soils. However, there is still a poor understanding of plant responses to low‐pH and Al3+ toxicity. Low‐pH or combined low‐pH and Al3+ stress was imposed in order to measure rhizosphere pH, ion fluxes, plasma membrane potential and intracellular H+ concentration in distal elongation and mature zones (MZs) along the longitudinal axis of Arabidopsis thaliana roots. Low‐pH stress facilitated H+ influx into root tissues and caused cytoplasmic acidification; by contrast, combined low‐pH/Al3+ treatment either decreased H+ influx in the distal elongation zone (DEZ) or induced H+ efflux in the MZ, leading to cytoplasmic alkalinization in both zones. Low‐pH stress induced an increase in rhizosphere pH in the DEZ, whereas combined low‐pH/Al3+ stress resulted in lower rhizosphere pH in both root zones compared with the low‐pH treatment alone. Low‐pH stress facilitated K+ efflux; the presence of Al3+ diminished K+ efflux or favored K+ influx into root tissues. In both zones, low‐pH treatment induced plasma membrane (PM) depolarization, which was significantly diminished (P≤ 0.05) when combined stresses (low‐pH/100 µM Al3+) were imposed. After 60 min of exposure, low pH caused PM depolarization, whereas low pH/100 µM Al3+ caused PM hyperpolarization. Thus, low pH and Al3+ toxicity differentially affect root tissues and, consequently, the rhizosphere, which might underpin the differential mechanisms of plant adaptation to these abiotic stresses.  相似文献   

3.
Thaxtomin A, a key phytotoxin produced by plant pathogenic Streptomyces sp., is implicit in common scab disease expression in potato. Primary targets and modes of action of thaxtomin A toxicity in plant cells are not well understood. In this work, early signalling events associated with thaxtomin A toxicity were studied using the ion-selective microelectrode ion flux estimation (MIFE) technique. Thaxtomin A-induced changes in net ion fluxes were measured across the plasma membrane (PM) of root and pollen tube tissue in Arabidopsis thaliana and tomato. Within a minute after toxin application, a rapid and short-lived Ca2+ influx was observed. Well ahead of the marked inhibition of root growth, a significant shift towards net H+ efflux across the PM occurred in all tissues. Similar to root tissues, thaxtomin A significantly modified ion flux profiles from growing pollen tubes. Thaxtomin A was more effective in young, physiologically active tissues (root elongation zone or pollen tube apex), suggesting a higher density of thaxtomin A-binding sites in these regions. Overall, our data provide the first evidence that thaxtomin A triggers an early signalling cascade, which may be crucial in plant-pathogen interactions. It also suggests a possible interaction between thaxtomin A and PM auxin receptors, as revealed from experiments on the auxin-sensitive ucu2-2/gi2 A. thaliana mutant.  相似文献   

4.
Calcium is a critical structural and regulatory nutrient in plants. However, mechanisms of its uptake by root cells are poorly understood. We have found that Ca2+ influx in Arabidopsis root epidermal protoplasts is mediated by voltage-independent rapidly activating Ca2+-permeable non-selective cation channels (NSCCs). NSCCs showed the following permeability (P) sequence: PCa (1.00) = PBa (0.93) > PZn (0.51), PCa/PNa = 0.19, PCa/PK = 0.14. They were inhibited by quinine, Gd3+, La3+ and the His modifier diethylpyrocarbonate, but not by the Ca2+ or K+ channel antagonists, verapamil and tetraethylammonium (TEA+). Single channel conductance measured in 20 mm external Ca2+ was 5.9 pS. Calcium-permeable NSCCs co-existed with hyperpolarisation-activated Ca2+ channels (HACCs), which activated 40-60 min after forming the whole-cell configuration. HACCs activated at voltages <-130 to -150 mV, showed slow activation kinetics and were regulated by cytosolic Ca2+ ([Ca2+]cyt). Using aequorin-expressing plants, a linear relationship between membrane potential (Vm) and resting [Ca2+]cyt was observed, indicating the involvement of NSCCs. Intact root 45Ca2+ influx was reduced by Gd3+ (NSCC blocker) but was verapamil and TEA+ insensitive. In the root elongation zone, both root net Ca2+ influx (measured by Ca2+-selective vibrating microelectrode) and NSCC activity were increased compared to the mature epidermis, suggesting the involvement of NSCC in growth. A Ca2+ acquisition system based on NSCC and HACC co-existence is proposed. In mature epidermal cells, NSCC-mediated Ca2+ influx dominates whereas in specialised root cells (root hairs and elongation zone cells) where elevated [Ca2+]cyt activates HACCs, HACC-mediated Ca2+ influx predominates.  相似文献   

5.
Hydrogen peroxide is an important regulatory agent in plants. This study demonstrates that exogenous H2O2 application to Arabidopsis thaliana root epidermis results in dose-dependent transient increases in net Ca2+ influx. The magnitude and duration of the transients were greater in the elongation zone than in the mature epidermis. In both regions, treatment with the cation channel blocker Gd3+ prevented H2O2-induced net Ca2+ influx, consistent with application of exogenous H2O2 resulting in the activation of plasma membrane Gd3+-sensitive Ca2+-influx pathways. Application of 10 mm H2O2 to the external plasma membrane face of elongation zone epidermal protoplasts resulted in the appearance of a hyperpolarization-activated Ca2+-permeable conductance. This conductance differed from that previously characterized as being responsive to extracellular hydroxyl radicals. In contrast, in mature epidermal protoplasts a plasma membrane hyperpolarization-activated Ca2+-permeable channel was activated only when H2O2 was present at the intracellular membrane face. Channel open probability increased with intracellular [H2O2] and at hyperpolarized voltages. Unitary conductance decreased thus: Ba2+ > Ca2+ (14.5 pS) > Mg2+ > Zn2+ (20 mM external cation, 1 mM H2O2). Lanthanides and Zn2+ (but not TEA+) suppressed the open probability without affecting current amplitude. The results suggest spatial heterogeneity and differential sensitivity of Ca2+ channel activation by reactive oxygen species in the root that could underpin signalling.  相似文献   

6.
Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.  相似文献   

7.
In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 μm proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the adjacent proximal region (450 μm away from the root tip up to the first root hair) with a high rate of elongation. In this study, the surface pH was measured in both zones using the microelectrode ion flux estimation technique. The surface pH is highest in the apical part of the transition zone and is lowest at the basal part of the fast elongation zone. Fast cell elongation is inhibited within minutes by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid; concomitantly, apoplastic alkalinization occurs in the affected root zone. Fusicoccin, an activator of the plasma membrane H(+)-ATPase, can partially rescue this inhibition of cell elongation, whereas the inhibitor N,N'-dicyclohexylcarbodiimide does not further reduce the maximal cell length. Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H(+)-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root.  相似文献   

8.
BACKGROUND AND AIMS: Root axes elongate slowly and swell radially under mechanical impedance. However, temporal and spatial changes to impeded root apices have only been described qualitatively. This paper aims (a) to quantify morphological changes to root apices and (b) assess whether these changes pre-dispose young root tissues to hypoxia. METHODS: Lupin (Lupinus angustifolius) seedlings were grown into coarse sand that was pressurized through a diaphragm to generate mechanical impedance on growing root axes. In situ observations yielded growth rates and root response to hypoxia. Roots were then removed to assess morphology, cell lengths and local growth velocities. Oxygen uptake into excised segments was measured. KEY RESULTS: An applied pressure of 15 kPa slowed root extension by 75% after 10-20 h while the same axes thickened by about 50%. The most terminal 2-3 mm of axes did not respond morphologically to impedance, in spite of the slower flux of cells out of this region. The basal boundary of root extension encroached to within 4 mm of the apex (cf. 10 mm in unimpeded roots), while radial swelling extended 10 mm behind the apex in impeded roots. Oxygen demand by segments of these short, thick, impeded roots was significantly different from segments of unimpeded roots when the zones of elongation in each treatment were compared. Specifically, impeded roots consumed O2 faster and O2 consumption was more likely to be O2-limited over a substantial proportion of the elongation zone, making these roots more susceptible to O2 deficit. Impeded roots used more O2 per unit growth (measured as either unit of elongation or unit of volumetric expansion) than unimpeded roots. Extension of impeded roots in situ was O2-limited at sub-atmospheric O2 levels (21% O2), while unimpeded roots were only limited below 11% O2. CONCLUSIONS: The shift in the zone of extension towards the apex in impeded roots coincided with greater vulnerability to hypoxia even after soil was removed. Roots still encased in impeded soil are likely to suffer from marked O2 deficits.  相似文献   

9.
The elongation zone of the primary root of barley (Hordeum vulgare L.) has been reported to be markedly basic in pH, in apparent contradiction of the acid-growth theory. We determined simultaneously the location of the elongation zone and the basic zone in these roots and found them indeed to be the same. However, sections of barley root elongation zones were found to respond to acidic, basic, and neutral solutions as predicted by the acid-growth theory.  相似文献   

10.
S. Shabala 《Plant and Soil》2003,255(1):217-226
Oscillatory processes are ubiquitous in the Plant Kingdom. Surprisingly, many plant physiologists ignored these as physiologically unimportant unwanted `noise'. Based on the application of the non-invasive ion-selective flux measuring (the MIFE) technique, this paper provides experimental evidence that ultradian oscillations in roots are a widespread phenomenon and reviews some physiological implications of ultradian rhythms in root nutrient acquisition. It is shown that the rhythmical character of root nutrient uptake is a characteristic feature for all measured species (both monocots and dicots; C3 and C4 type of photosynthesis). These oscillations were present in all major functional root zones, including root meristem, elongation and mature zone, and root hair region. For the first time, ultradian ion flux oscillations have been reported from the developing root hairs and from vertically grown roots exhibiting circumnutations. Several types of ultradian oscillations were distinguished, including those associated with extension growth of root tissues, more slow oscillations associated with either root circumnutation or nutrient acquisition in the mature zone, and rhythmical fluctuation in nutrient acquisition, associated with root adaptive responses to environmental stresses. Some underlying ionic mechanisms are discussed. Overall, these results show a crucial role of the rhythmical membrane-transport processes in plant–soil environmental interaction.  相似文献   

11.
Plant natriuretic peptides (PNPs) belong to a novel class of systemically mobile molecules that are structurally similar to the N-terminal domain of expansins and affect physiological processes such as protoplast volume regulation at nano-molar concentrations. Here we demonstrate that AtPNP-A, a recombinant Arabidopsis thaliana PNP causes rapid H(+) influx in the elongation zone of A. thaliana roots but not in the mature zone. AtPNP-A also induces significant K(+) and Na(+) efflux and this effect is seen in the mature root zone only. These observations suggest that responses to AtPNP-A are developmental stage and tissue specific and point to a complex role in plant growth and homeostasis.  相似文献   

12.
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.  相似文献   

13.
Roots are very sensitive to hypoxia and adapt effectively to a reduced availability of oxygen in the soil. However, the site of the root where oxygen availability is sensed and how roots acclimate to hypoxia remain unclear. In this study, we found that the root apex transition zone plays central roles in both sensing and adapting to root hypoxia. The exposure of cells of the root apex to hypoxia is sufficient to achieve hypoxic acclimation of the entire root; particularly relevant in this respect is that, of the entire root apex, the transition zone cells show the highest demand for oxygen and also emit the largest amount of nitric oxide (NO). Local root apex-specific oxygen deprivation dramatically inhibits the oxygen influx peak in the transition zone and simultaneously stimulates a local increase in NO emission. The hypoxia-induced efflux of NO is strictly associated with the transition zone and is essential for hypoxic acclimation of the entire root.  相似文献   

14.
Short-term treatment (30min) of barley roots with a low 10μM Cd concentration induced significant H(2)O(2) production in the elongation and differentiation zone of the root tip 3h after treatment. This elevated H(2)O(2) production was accompanied by root growth inhibition and probably invoked root swelling in the elongation zone of the root tip. By contrast, a high 60μM Cd concentration induced robust H(2)O(2) production in the elongation zone of the root tip already 1h after short-term treatment. This robust H(2)O(2) generation caused extensive cell death 6h after short-term treatment. Similarly to low Cd concentration, exogenously applied H(2)O(2) caused marked root growth inhibition, which at lower H(2)O(2) concentration was accompanied by root swelling. The auxin signaling inhibitor p-chlorophenoxyisobutyric acid effectively inhibited 10μM Cd-induced root growth inhibition, H(2)O(2) production and root swelling, but was ineffective in the alleviation of 60μM Cd-induced root growth inhibition and H(2)O(2) production. Our results demonstrated that Cd-induced mild oxidative stress caused root growth inhibition, likely trough the rapid reorientation of cell growth in which a crucial role was played by IAA signaling in the root tip. Strong oxidative stress induced by high Cd concentration caused extensive cell death in the elongation zone of the root tip, resulting in the cessation of root growth or even in root death.  相似文献   

15.
Nutrient acquisition in the mature root zone is under systemic control by the shoot and the root tip. In maize, exposure of the shoot to light induces short-term (within 1–2 min) effects on net K+ and H+ transport at the root surface. H+ efflux decreased (from −18 to −12 nmol m−2 s−1) and K+ uptake (∼2 nmol m−2 s−1) reverted to efflux (∼−3 nmol m−2 s−1). Xylem probing revealed that the trans-root (electrical) potential drop between xylem vessels and an external electrode responded within seconds to a stepwise increase in light intensity; xylem pressure started to decrease after a ∼3 min delay, favouring electrical as opposed to hydraulic signalling. Cutting of maize and barley roots at the base reduced H+ efflux and stopped K+ influx in low-salt medium; xylem pressure rapidly increased to atmospheric levels. With 100 m m NaCl added to the bath, the pressure jump upon cutting was more dramatic, but fluxes remained unaffected, providing further evidence against hydraulic regulation of ion uptake. Following excision of the apical part of barley roots, influx changed to large efflux (−50 nmol m−2 s−1). Kinetin (2–4  µ m ), a synthetic cytokinin, reversed this effect. Regulation of ion transport by root-tip-synthesized cytokinins is discussed.  相似文献   

16.
Mancuso S  Boselli M 《Planta》2002,214(5):767-774
Oxygen fluxes into and from root cells of Vitis rupestris (flooding sensitive), V. riparia (flooding tolerant) and V. vinifera (medium tolerance to flooding) were measured under different levels of O2 availability using a recently developed polarographic O2-selective, vibrating-microelectrode system. The system enables fluxes to be measured with a spatial resolution of 2-3 microm and a temporal resolution of 10 s. No difference in root porosity was found among the genotypes when grown for 30 days in an aerated solution. Under normoxic conditions, O2 influx was characterised by two distinct peaks, one in the division zone and the other in the elongation zone of the roots. This pattern was found in all three species studied, although the fluxes showed a different magnitude. The peak in the elongation zone coincided with maximum relative elemental growth rates. When the energetics of the cell was disturbed by cyanide, both growth and oxygen O2 influxes ceased at the same time. Under hypoxic conditions, V. riparia plants showed a precise strategy directed toward the maintenance of enough O2 for the respiratory needs of mitosis in the apical meristem of the roots. Thus, whereas in the division zone of V. rupestris and V. vinifera, at bulk O2 concentrations of 0.094 mol x m(-3), the O2 influx was reduced by 70.5 and 38.5%, respectively, for V. riparia no variation in the O2 influx was detected down to bulk O2 concentrations of 0.078 mol x m(-3). Moreover, in accordance with the different tolerances of the plants, the Vitis genotypes were found to differ in their radial O2 loss from the adventitious roots when in an O2-free environment. The results are discussed in terms of possible mechanisms of response to anoxia in Vitis species with different tolerances to flooding.  相似文献   

17.
Calcium can ameliorate Na+ toxicity in plants by decreasing Na+ influx through nonselective cation channels. Here, we show that elevated external [Ca2+] also inhibits Na+ -induced K+ efflux through outwardly directed, K+ -permeable channels. Noninvasive ion flux measuring and patch-clamp techniques were used to characterize K+ fluxes from Arabidopsis (Arabidopsis thaliana) root mature epidermis and leaf mesophyll under various Ca2+ to Na+ ratios. NaCl-induced K+ efflux was not related to the osmotic component of the salt stress, was inhibited by the K+ channel blocker TEA+, was not mediated by inwardly directed K+ channels (tested in the akt1 mutant), and resulted in a significant decrease in cytosolic K+ content. NaCl-induced K+ efflux was partially inhibited by 1 mm Ca2+ and fully prevented by 10 mm Ca2+. This ameliorative effect was at least partially attributed to a less dramatic NaCl-induced membrane depolarization under high Ca2+ conditions. Patch-clamp experiments (whole-cell mode) have demonstrated that two populations of Ca2+ -sensitive K+ efflux channels exist in protoplasts isolated from the mature epidermis of Arabidopsis root and leaf mesophyll cells. The instantaneously activating K+ efflux channels showed weak voltage dependence and insensitivity to external and internal Na+. Another population of K+ efflux channels was slowly activating, steeply rectifying, and highly sensitive to Na+. K+ efflux channels in roots and leaves showed different Ca2+ and Na+ sensitivities, suggesting that these organs may employ different strategies to withstand salinity. Our results suggest an additional mechanism of Ca2+ action on salt toxicity in plants: the amelioration of K+ loss from the cell by regulating (both directly and indirectly) K+ efflux channels.  相似文献   

18.
The involvement of Ca2+ and H+ flux oscillations in root nutation was studied for decapped roots of corn ( Zea mays L. cv. Aussie Gold) placed horizontally. Net ion fluxes were measured around the elongation and meristematic regions using a microelectrode ion flux measuring system. High correlation between H+ flux oscillations and root nutations was found in the elongation region. Two oscillatory components of H+ flux, with periods of about 90 min and 7 min, correlated with root circumnutations and micronutations, respectively. The periods of H+ flux oscillations and rhythmical root movements in this region could be modified similarly by external factors including pH. In the meristematic region no association between ion flux behaviour and nutation was apparent. Ion flux oscillations and nutations both decreased in amplitude as the growth rate at the measured location decreased. Possible involvement of ion flux oscillations in root circumnutation is discussed. It is concluded that a model involving an internal oscillator must be developed to explain the H+ flux involvement in root nutations.  相似文献   

19.
The influence of Al exposure on long-distance Ca2+ translocation from specific root zones (root apex or mature root) to the shoot was studied in intact seedlings of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). Seedlings were grown in 100 [mu]M CaCl2 solution (pH 4.5) for 3 d. Subsequently, a divided chamber technique using 45Ca2+-labeled solutions (100 [mu]M CaCl2 with or without 5 or 20 [mu]M AlCl3, pH 4.5) was used to study Ca2+ translocation from either the terminal 5 to 10 mm of the root or a 10-mm region of intact root approximately 50 mm behind the root apex. The Al concentrations used, which were toxic to Scout 66, caused a significant inhibition of Ca2+ translocation from the apical region of Scout 66 roots. The same Al exposures had a much smaller effect on root apical Ca2+ translocation in Atlas 66. When a 10-mm region of the mature root was exposed to 45Ca2+, smaller genotypic differences in the Al effects effects on Ca2+ translocation were observed, because the degree of Al-induced inhibition of Ca2+ translocation was less than that at the root apex. Exposure of the root apex to Al inhibited root elongation by 70 to 99% in Scout 66 but had a lesser effect (less than 40% inhibition) in Atlas 66. When a mature root region was exposed to Al, root elongation was not significantly affected in either cultivar. These results demonstrate that genotypic differences in Al-induced inhibition of Ca2+ translocation and root growth are localized primarily in the root apex. The pattern of Ca2+ translocation within the intact root was mainly basipetal, with most of the absorbed Ca2+ translocated toward the shoot. A small amount of acropetal Ca2+ translocation from the mature root regions to the apex was also observed, which accounted for less than 5% of the total Ca2+ translocation within the entire root. Because Ca2+ translocation toward the root apex is limited, most of the Ca2+ needed for normal cellular function in the apex must be absorbed from the external solution. Thus, continuous Al disruption of Ca2+ absorption into cells of the root apex could alter Ca2+ nutrition and homeostasis in these cells and could play a pivotal role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars.  相似文献   

20.
In the present study, we investigated the alteration of reactive oxygen species production along the longitudinal axis of barley root tips during Cd treatment. In unstressed barley root tips, H2O2 production decreased from the root apex towards the differentiation zone where again, a slight increase was observed towards the more mature region of root. An opposite pattern was observed for O 2 ?? and OH? generation. The amount of both O 2 ?? and OH? was highest in the elongation zone, decreased in the root apex and at the differentiation zone of root, then increased again towards the more mature region of root. An elevated Cd-induced O 2 ?? production started in the elongation zone and increased further along the differentiation zone of barley root tip. In contrast, Cd-induced H2O2 production was localised to the root elongation zone and to the beginning of the differentiation zone. In contrast to Cd-induced H2O2 and O 2 ?? production, Cd reduced OH? production along the whole barley root tip. Our results suggest that not only an increase but also the spatial distribution of reactive oxygen species production is involved in the Cd-induced stress response of barley root tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号