首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VPg linkage to the 5' ends of picornavirus RNAs requires production of VPg-pUpU. VPg-pUpU is templated by an RNA stem-loop (the cre or oriI) found at different locations in picornavirus genomes. At least one adaptive mutation is required for human rhinovirus type 14 (HRV-14) to use poliovirus type 3 (PV-3) or PV-1 oriI efficiently. One mutation changes Leu-94 of 3C to Pro; the other changes Asp-406 of 3Dpol to Asn. By using an in vitro VPg uridylylation system for HRV-14 that recapitulates biological phenotypes, we show that the 3C adaptive mutation functions at the level of 3C(D) and the 3D adaptive mutation functions at the level of 3Dpol. Pro-94 3C(D) has an expanded specificity and enhanced stability relative to wild-type 3C(D) that leads to production of more processive uridylylation complexes. PV-1/HRV-14 oriI chimeras reveal sequence specificity in 3C(D) recognition of oriI that resides in the upper stem. Asn-406 3Dpol is as active as wild-type 3Dpol in RNA-primed reactions but exhibits greater VPg uridylylation activity due to more efficient recruitment to and retention in the VPg uridylylation complex. Asn-406 3Dpol from PV-1 exhibits identical behavior. These studies suggest a two-step binding mechanism in the assembly of the 3C(D)-oriI complex that leads to unwinding of at least the upper stem of oriI and provide additional support for a direct interaction between the back of the thumb of 3Dpol and 3C that is required for 3Dpol recruitment to and retention in the uridylylation complex.  相似文献   

2.
All picornaviruses have a protein, VPg, covalently linked to the 5'-ends of their genomes. Uridylylated VPg (VPg-pUpU) is thought to serve as the protein primer for RNA synthesis. VPg-pUpU can be produced in vitro by the viral polymerase, 3Dpol, in a reaction in which a single adenylate residue of a stem-loop structure, termed oriI, templates processive incorporation of UMP into VPg by using a "slide-back" mechanism. This reaction is greatly stimulated by viral precursor protein 3CD or its processed derivative, 3C; both contain RNA-binding and protease activities. We show that the 3C domain encodes specificity for oriI, and the 3D domain enhances the overall affinity for oriI. Thus, 3C(D) stimulation exhibits an RNA length dependence. By using a minimal system to evaluate the mechanism of VPg uridylylation, we show that the active complex contains polymerase, oriI, and 3C(D) at stoichiometry of 1:1:2. Dimerization of 3C(D) is supported by physical and structural data. Polymerase recruitment to and retention in this complex require a protein-protein interaction between the polymerase and 3C(D). Physical and functional data for this interaction are provided for three picornaviruses. VPg association with this complex is weak, suggesting that formation of a complex containing all necessary components of the reaction is rate-limiting for the reaction. We suggest that assembly of this complex in vivo would be facilitated by use of precursor proteins instead of processed proteins. These data provide a glimpse into the organization of the ribonucleoprotein complex that catalyzes this key step in picornavirus genome replication.  相似文献   

3.
The primary oligomerization domain of poliovirus polymerase, 3Dpol, is stabilized by the interaction of the back of the thumb subdomain of one molecule with the back of the palm subdomain of a second molecule, thus permitting the head-to-tail assembly of 3Dpol monomers into long fibers. The interaction of Arg-455 and Arg-456 of the thumb with Asp-339, Ser-341, and Asp-349 of the palm is key to the stability of this interface. We show that mutations predicted to completely disrupt this interface do not produce equivalent growth phenotypes. Virus encoding a polymerase with changes of both residues of the thumb to alanine is not viable; however, virus encoding a polymerase with changes of all three residues of the palm to alanine is viable. Biochemical analysis of 3Dpol derivatives containing the thumb or palm substitutions revealed that these derivatives are both incapable of forming long fibers, suggesting that polymerase fibers are not essential for virus viability. The RNA binding activity, polymerase activity, and thermal stability of these derivatives were equivalent to that of the wild-type enzyme. The two significant differences observed for the thumb mutant were a modest reduction in the ability of the altered 3CD proteinase to process the VP0/VP3 capsid precursor and a substantial reduction in the ability of the altered 3Dpol to catalyze oriI-templated uridylylation of VPg. The defect to uridylylation was a result of the inability of 3CD to stimulate this reaction. Because 3C alone can substitute for 3CD in this reaction, we conclude that the lethal replication phenotype associated with the thumb mutant is caused, in part, by the disruption of an interaction between the back of the thumb of 3Dpol and some undefined domain of 3C. We speculate that this interaction may also be critical for assembly of other complexes required for poliovirus genome replication.  相似文献   

4.
Genome replication of poliovirus, as yet unsolved, involves numerous viral polypeptides that arise from proteolysis of the viral polyprotein. One of these proteins is 3AB, an RNA-binding protein with multiple functions, that serves also as the precursor for the genome-linked protein VPg (= 3B). Eight clustered charged amino acid-to-alanine mutants in the 3AB coding region of poliovirus were constructed and analyzed, together with three additional single-amino acid exchange mutants in VPg, for viral phenotypes. All mutants expressed severe inhibition in RNA synthesis, but none were temperature sensitive (ts). The 3AB polypeptides of mutants with a lethal phenotype were overexpressed in Escherichia coli, purified to near homogeneity, and studied with respect to four functions: (1) ribonucleoprotein complex formation with 3CDpro and the 5'-terminal cloverleaf of the poliovirus genome; (2) binding to the genomic and negative-sense RNA; (3) stimulation of 3CDpro cleavage; and (4) stimulation of RNA polymerase activity of 3Dpol. The results have allowed mapping of domains important for RNA binding and the formation of certain protein-protein complexes, and correlation of these processes with essential steps in viral genome replication.  相似文献   

5.
Replication of picornaviral genomes requires recognition of at least three cis-acting replication elements: oriL, oriI, and oriR. Although these elements lack an obvious consensus sequence or structure, they are all recognized by the virus-encoded 3C protein. We have studied the poliovirus 3C-oriI interaction in order to begin to decipher the code of RNA recognition by picornaviral 3C proteins. oriI is a stem-loop structure that serves as the template for uridylylation of the peptide primer VPg by the viral RNA-dependent RNA polymerase. In this report, we have used nuclear magnetic resonance (NMR) techniques to study 3C alone and in complex with two single-stranded RNA oligonucleotides derived from the oriI stem. The (1)H-(15)N spectra of 3C recorded in the presence of these RNAs revealed site-specific chemical shift perturbations. Residues that exhibit significant perturbations are primarily localized in the amino terminus and in a highly conserved loop between residues 81 and 89. In general, the RNA-binding site defined in this study is consistent with predictions based on biochemical and mutagenesis studies. Although some residues implicated in RNA binding by previous studies are perturbed in the 3C-RNA complex reported here, many are unique. These studies provide unique site-specific insight into residues of 3C that interact with RNA and set the stage for detailed structural investigation of the 3C-RNA complex by NMR. Interpretation of our results in the context of an intact oriI provides insight into the architecture of the picornavirus VPg uridylylation complex.  相似文献   

6.
Membranous crude replication complexes (CRC) were isolated from poliovirus-infected HeLa cells as recently described (N. Takeda, R.J. Kuhn, C.-F. Yang, T. Takegami, and E. Wimmer, J. Virol. 60:43-53, 1986). Viruses used to produce the CRC were poliovirus type 1 (Mahoney), [PV-1(M)], poliovirus type 1 (Sabin) [PV-1(S)], and four in vitro recombinants that were constructed from infectious cDNA clones. RNA synthesis in CRC was studied. No end-linked, full-length double-stranded poliovirus RNA was detected in CRC regardless of whether nonionic detergent (Nonidet P-40) was added prior to incubation. Synthesis of VPg-pU and VPg-pUpU, two nucleotidyl proteins presumed to be involved in the initiation of RNA synthesis, was slower at 30 degrees C in CRC induced by PV-1(S) than by PV-1(M). This observation was used to design a pulse-chase experiment whose result suggested that synthesis of VPg-pUpU occurred by uridylylation of VPg-pU. Synthesis of VPg-pU(pU) was thermosensitive in CRC induced by PV-1(S). With CRC of recombinant viruses, the thermosensitive block covaried to nucleotide substitutions in PV-1(S) that mapped to the virus-induced RNA polymerase 3Dpol. We conclude that plus-stranded RNA synthesis in CRC does not proceed via hairpin structures. The results of VPg-pU----VPg-pUpU synthesis are consistent with a model in which VPg-pU is the primer of RNA synthesis mediated by 3Dpol. The data suggest that uridylylation of VPg or a precursor thereof may be catalyzed by 3Dpol itself, a mechanism resembling events occurring in adenovirus DNA replication.  相似文献   

7.
The 5' ends of all picornaviral RNAs are linked covalently to the genome-encoded peptide, VPg (or 3B). VPg linkage is thought to occur in two steps. First, VPg serves as a primer for production of diuridylylated VPg (VPg-pUpU) in a reaction catalyzed by the viral polymerase that is templated by an RNA element (oriI). It is currently thought that the viral 3AB protein is the source of VPg in vivo. Second, VPg-pUpU is transferred to the 3' end of plus- and/or minus-strand RNA and serves as primer for production of full-length RNA. Nothing is known about the mechanism of transfer. We present biochemical and biological evidence refuting the use of 3AB as the donor for VPg uridylylation. Our data are consistent with precursors 3BC and/or 3BCD being employed for uridylylation. This conclusion is supported by in vitro uridylylation of these proteins, the ability of a mutant replicon incapable of producing processed VPg to replicate in HeLa cells and cell-free extracts and corresponding precursor processing profiles, and the demonstration of 3BC-linked RNA in mutant replicon-transfected cells. These data permit elaboration of our model for VPg uridylylation to include the use of precursor proteins and invoke a possible mechanism for location of the diuridylylated, VPg-containing precursor at the 3' end of plus- or minus-strand RNA for production of full-length RNA. Finally, determinants of VPg uridylylation efficiency suggest formation and/or collapse or release of the uridylylated product as the rate-limiting step in vitro depending upon the VPg donor employed.  相似文献   

8.
Poliovirus VPg is a 22 amino acid residue peptide that serves as the protein primer for replication of the viral RNA genome. VPg is known to bind directly to the viral RNA-dependent RNA polymerase, 3D, for covalent uridylylation, yielding mono and di-uridylylated products, VPg-pU and VPg-pUpU, which are subsequently elongated. To model the docking of the VPg substrate to a putative VPg-binding site on the 3D polymerase molecule, we performed a variety of structure-based computations followed by experimental verification. First, potential VPg folded structures were identified, yielding a suite of predicted beta-hairpin structures. These putative VPg structures were then docked to the region of the polymerase implicated by genetic experiments to bind VPg, using grid-based and fragment-based methods. Residues in VPg predicted to affect binding were identified through molecular dynamics simulations, and their effects on the 3D-VPg interaction were tested computationally and biochemically. Experiments with mutant VPg and mutant polymerase molecules confirmed the predicted binding site for VPg on the back side of the polymerase molecule during the uridylylation reaction, opposite to that predicted to bind elongating RNA primers.  相似文献   

9.
Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNA-dependent RNA polymerase (3D(pol)), homopolymeric templates, and synthetic subgenomic or antisubgenomic RNA. Initiation of RNA synthesis on homopolymeric templates as well as replication of subgenomic polyadenylated RNA was strictly primer dependent. In this context and as observed for other enteric RNA viruses, i.e., poliovirus, a protein-primed initiation of RNA synthesis after elongation of the VPg by norovirus 3D(pol) was postulated. To address this question, norovirus VPg was expressed in Escherichia coli and purified. Incubation of VPg with norovirus 3D(pol) generated VPg-poly(U), which primed the replication of subgenomic polyadenylated RNA. In contrast, replication of antisubgenomic RNA was not primer dependent, nor did it depend on a leader sequence, as evidenced by deletion analysis of the 3' termini of subgenomic and antisubgenomic RNA. On nonpolyadenylated RNA, i.e., antisubgenomic RNA, norovirus 3D(pol) initiated RNA synthesis de novo and terminated RNA synthesis by a poly(C) stretch. Interestingly, on poly(C) RNA templates, norovirus 3D(pol) initiated RNA synthesis de novo in the presence of high concentrations of GTP. We propose a novel model for initiation of replication of the norovirus genome by 3D(pol), with a VPg-protein-primed initiation of replication of polyadenylated genomic RNA and a de novo initiation of replication of antigenomic RNA.  相似文献   

10.
11.
12.
A series of short insertion mutations was introduced into the poliovirus gene for 3Dpol at a number of different locations. When substituted for wild-type sequences in a full-length, infectious cDNA and tested for infectivity, all 3D mutants were nonviable. The mutant cDNAs were introduced into a bacterial plasmid designed to direct the expression of poliovirus 3CD, a viral protein composed of contiguous protease and RNA polymerase sequences. Bacteria transformed with these plasmids all expressed similar amounts of 3CD, and all mutant proteins cleaved themselves to generate wild-type 3Cpro and mutant 3Dpol polypeptides with approximately the same efficiency as wild-type 3CD. The released mutant 3Dpol proteins were all defective in RNA-dependent RNA polymerase activity in vitro. Uncleaved 3CD is a protease required for processing the viral capsid protein precursor, P1. In an in vitro assay of P1 cleavage activity, some of the mutant 3CD proteins expressed in Escherichia coli showed normal activity, while others were clearly inactive. Thus, alterations in the sequence and/or folding of different regions of the 3D protein have differential effects on its various activities.  相似文献   

13.
Studies of the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV), 3Dpol, have shown that Asn-297 permits this enzyme to distinguish ribose from 2'-deoxyribose. All animal RNA viruses have Asn at the structurally homologous position of their polymerases, suggesting a conserved function for this residue. However, all prokaryotic RNA viruses have Glu at this position. In the presence of Mg2+, the apparent affinity of Glu-297 3Dpol for 2'-deoxyribonucleotides was decreased by 6-fold relative to wild type without a substantial difference in the fidelity of 2'-dNMP incorporation. The fidelity of ribonucleotide misincorporation for Glu-297 3Dpol was reduced by 14-fold relative to wild type. A 4- to 11-fold reduction in the rate of ribonucleotide incorporation was observed. Glu-297 PV was unable to grow in HeLa cells due to a replication defect equivalent to that observed for a mutant PV encoding an inactive polymerase. Evaluation of the protein-(VPg)-primed initiation reaction showed that only half of the Glu-297 3Dpol initiation complexes were capable of producing VPg-pUpU product and that the overall yield of uridylylated VPg products was reduced by 20-fold relative to wild-type enzyme, a circumstance attributable to a reduced affinity for UTP. These studies identify the first RdRp derivative with a mutator phenotype and provide a mechanistic basis for the elevated mutation frequency of RNA phage relative to animal RNA viruses observed in culture. Although protein-primed initiation and RNA-primed elongation complexes employ the same polymerase active site, the functional differences reported here imply significant structural differences between these complexes.  相似文献   

14.
Picornaviral RNA replication utilizes a small virus-encoded protein, termed 3B or VPg, as a primer to initiate RNA synthesis. This priming step requires uridylylation of the VPg peptide by the viral polymerase protein 3D(pol), in conjunction with other viral or host cofactors. In this study, we compared the viral specificity in 3D(pol)-catalyzed uridylylation reactions between poliovirus (PV) and human rhinovirus 16 (HRV16). It was found that HRV16 3D(pol) was able to uridylylate PV VPg as efficiently as its own VPg, but PV 3D(pol) could not uridylylate HRV16 VPg. Two chimeric viruses, PV containing HRV16 VPg (PV/R16-VPg) and HRV16 containing PV VPg (R16/PV-VPg), were constructed and tested for replication capability in H1-HeLa cells. Interestingly, only PV/R16-VPg chimeric RNA produced infectious virus particles upon transfection. No viral RNA replication or cytopathic effect was observed in cells transfected with R16/PV-VPg chimeric RNA, despite the ability of HRV16 3D(pol) to uridylylate PV VPg in vitro. Sequencing analysis of virion RNA isolated from the virus particles generated by PV/R16-VPg chimeric RNA identified a single residue mutation in the VPg peptide (Glu(6) to Val). Reverse genetics confirmed that this mutation was highly compensatory in enhancing replication of the chimeric viral RNA. PV/R16-VPg RNA carrying this mutation replicated with similar kinetics and magnitude to wild-type PV RNA. This cell culture-induced mutation in HRV16 VPg moderately increased its uridylylation by PV 3D(pol) in vitro, suggesting that it might be involved in other function(s) in addition to the direct uridylylation reaction. This study demonstrated the use of chimeric viruses to characterize viral specificity and compatibility in vivo between PV and HRV16 and to identify critical amino acid residue(s) for viral RNA replication.  相似文献   

15.
A terminal adenylyl transferase (TATase) activity has been identified in preparations of purified poliovirus RNA-dependent RNA polymerase (3Dpol). Highly purified 3Dpol is capable of adding [32P]AMP to the 3' ends of chemically synthesized 12-nucleotide (nt)-long RNAs. The purified 52-kDa polypeptide, isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured, retained the TATase activity. Two 3Dpol mutants, purified from Escherichia coli expression systems, displayed no detectable polymerase activity and were unable to catalyze TATase activity. Likewise, extracts from the parental E. coli strain that harbored no expression plasmid were unable to catalyze formation of the TATase products. With the RNA oligonucleotide 5'-CCUGCUUUUGCA-3' used as an acceptor, the products formed by wild-type 3Dpol were 9 and 18 nt longer than the 12-nt oligomer. GTP, CTP, and UTP did not serve as substrates for transfer to this RNA, either by themselves or when all deoxynucleoside triphosphates were present in the reaction. Results from kinetic and stoichiometric analyses suggest that the reaction is catalytic and shows substrate and enzyme dependence. The 3'-terminal 13 nt of poliovirus minus-strand RNA also served as an acceptor for TATase activity, raising the possibility that this activity functions in poliovirus RNA replication. The efficiency of utilization and the nature of the products formed during the reaction were dependent on the acceptor RNA.  相似文献   

16.
Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3Dpol, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3Dpol have been determined. The three structures are very similar to one another, and to the closely related poliovirus (PV) 3Dpol enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3Dpol provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3Dpol also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.  相似文献   

17.
The poliovirus RNA-dependent RNA polymerase (3Dpol) contains a region of homology centered around the amino acid motif YGDD (amino acids 326 to 329), which has been postulated to be involved in the catalytic activity of the enzyme. Previous studies from this laboratory have used oligonucleotide site-directed mutagenesis to substitute the tyrosine amino acid at this motif with other amino acids (S. A. Jablonski and C. D. Morrow, J. Virol. 67:373-381, 1993). The viruses recovered with 3Dpol genes with a methionine mutation also contained a second mutation at amino acid 108 resulting in a glutamic acid-to-aspartic acid change (3D-E-108 to 3D-D-108) in the poliovirus RNA polymerase. On the basis of these results, we suggested that the amino acid at position 108 might interact with the YGDD region of the poliovirus polymerase. To further investigate this possibility, we have constructed a series of constructs in which the poliovirus RNA polymerases contained a mutation at amino acid 108 (3D-E-108 to 3D-D-108) as well as a mutation in which the tyrosine amino acid (3D-Y-326) was substituted with cysteine (3D-C-326) or serine (3D-S-326). The mutant 3Dpol polymerases were expressed in Escherichia coli, and in vitro enzyme activity was analyzed. Enzymes containing the 3D-D-108 mutation with the wild-type amino acid (3D-Y-326) demonstrated in vitro enzyme activity similar to that of the wild-type enzyme containing 3D-E-108. In contrast, enzymes with the 3D-C-326 or 3D-S-326 mutation had less in vitro activity than the wild type. The inclusion of the second mutation at amino acid 3D-D-108 did not significantly affect the in vitro activity of the polymerases containing 3D-C-326 or 3D-S-326 mutation. Transfections of poliovirus cDNAs containing the substitution at amino acid 326 with or without the second mutation at amino acid 108 were performed. Consistent with previous findings, we found that transfection of poliovirus cDNAs containing the 3D-C-326 or 3D-S-326 mutation in 3Dpol did not result in the production of virus. Surprisingly, transfection of the poliovirus cDNAs containing the 3D-D-108/C-326 double mutation, but not the 3D-D-108/S-326 mutation, resulted in the production of virus. The virus obtained from transfection of polio-virus cDNAs containing 3D-D-108/C-326 mutation replicated with kinetics similar to that of the wild-type virus. RNA sequence analysis of the region of the 3Dpol containing the 3D-C-326 mutation revealed that the codon for cysteine (UGC) reverted to the codon for tyrosine (UAC). The results of these studies establish that under the appropriate conditions, poliovirus has the capacity to revert mutations within the YGDD amino acid motif of the poliovirus 3Dpol gene and further strengthen the idea that interaction between amino acid 108 and the YGDD region of 3Dpol is required for viral replication.  相似文献   

18.
The 22-amino-acid protein VPg can be uridylylated in solution by purified poliovirus 3D polymerase in a template-dependent reaction thought to mimic primer formation during RNA amplification in infected cells. In the cell, the template used for the reaction is a hairpin RNA termed 2C-cre and, possibly, the poly(A) at the 3' end of the viral genome. Here, we identify several additional substrates for uridylylation by poliovirus 3D polymerase. In the presence of a 15-nucleotide (nt) RNA template, the poliovirus polymerase uridylylates other polymerase molecules in an intermolecular reaction that occurs in a single step, as judged by the chirality of the resulting phosphodiester linkage. Phosphate chirality experiments also showed that VPg uridylylation can occur by a single step; therefore, there is no obligatory uridylylated intermediate in the formation of uridylylated VPg. Other poliovirus proteins that could be uridylylated by 3D polymerase in solution were viral 3CD and 3AB proteins. Strong effects of both RNA and protein ligands on the efficiency and the specificity of the uridylylation reaction were observed: uridylylation of 3D polymerase and 3CD protein was stimulated by the addition of viral protein 3AB, and, when the template was poly(A) instead of the 15-nt RNA, the uridylylation of 3D polymerase itself became intramolecular instead of intermolecular. Finally, an antiuridine antibody identified uridylylated viral 3D polymerase and 3CD protein, as well as a 65- to 70-kDa host protein, in lysates of virus-infected human cells.  相似文献   

19.
Internally located, cis-acting RNA replication elements, termed cres, are essential for replication of the genomes of picornaviruses such as human rhinovirus 14 (HRV-14) and poliovirus because they template uridylylation of the protein primer, VPg, by the polymerase 3D(pol). These cres form stem-loop structures sharing a common loop motif, and the HRV-14 cre can substitute functionally for the poliovirus cre in both uridylylation in vitro and RNA replication in vivo. We show, however, that the poliovirus cre is unable to support HRV-14 RNA replication. This lack of complementation maps to the stem of the poliovirus cre and was reversed by single nucleotide substitutions in the stem as well as the base of the loop. Replication-competent, revertant viruses rescued from dicistronic HRV-14 RNAs containing the poliovirus cre, or a chimeric cre containing the poliovirus stem, contained adaptive amino acid substitutions. These mapped to the surface of both the polymerase 3D(pol), at the tip of the "thumb" domain, and the protease 3C(pro), on the side opposing the active site and near the end of an extended strand segment implicated previously in RNA binding. These mutations substantially enhanced replication competence when introduced into HRV-14 RNAs containing the poliovirus cre, and they were additive in their effects. The data support a model in which 3CD or its derivatives 3C(pro) and 3D(pol) interact directly with the stem of the cre during uridylylation of VPg.  相似文献   

20.
The uridylylation of the VPg peptide primer is the first stage in the replication of picornavirus RNA. This process can be achieved in vitro using purified components, including 3B (VPg) with the RNA dependent RNA polymerase (3Dpol), the precursor 3CD, and an RNA template containing the cre/bus. We show that certain RNA sequences within the foot-and-mouth disease virus (FMDV) 5' untranslated region but outside of the cre/bus can enhance VPg uridylylation activity. Furthermore, we have shown that the FMDV 3C protein alone can substitute for 3CD, albeit less efficiently. In addition, the VPg precursors, 3B(3)3C and 3B(123)3C, can function as substrates for uridylylation in the absence of added 3C or 3CD. Residues within the FMDV 3C protein involved in interaction with the cre/bus RNA have been identified and are located on the face of the protein opposite from the catalytic site. These residues within 3C are also essential for VPg uridylylation activity and efficient virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号